Information for each entry item is restricted to the designated pages. However, the applicant may decide how much page space to assign for any individual entry item.

Receipt Number

Cryptographic Techniques Overview

PSEC	bographic recinique
Categories	1.Asymmetric Cryptographic Schemes
0	2.Symmetric Ciphers
	3.Hush Functions
	4.Pseudo-random Number Generators
Security Funct	ions of Asymmetric Cryptographic Schemes
1.confie	dentiality 2. Authentication 3. signature 4. key- sharing
Subcategories of	of Symmetric Ciphers
1. stream	ciphers 2. 64-bits block ciphers 3. 128-bits block ciphers
2. Cryptograph	ic Techniques Overview
9 1 Design poli	
The design target (of PSEC is as follows:
(1) It should be	proven to be secure in the strongest sense
(i.e., semantica	lly secure against adaptively chosen-ciphertext attacks) under reasonable
assumptions (a	nd in the random oracle model).
(2) Its performa	ance should be comparable to the elliptic curve ElGamal and other practical
encryption sche	emes based on the elliptic curve discrete logarithm assumption.
(3) Its nybriu u	sage with a symmetric encryption should be also proven to be secure in the
strongest sense	(i.e., semantically secure against adaptively chosen-cipilertext attacks) under under under under (and in the random oracle model)
16030110016 0350	
Our approach to co public-key encrypt strongest sense if t	onstruct PSEC is based on the random oracle model [1], in which a primitive ion function is converted to an encryption scheme provably secure in the he underlying hash functions are assumed truly random functions.
Our primitive encr conversions based PSEC-1, PSEC-2 a performance and h	yption function is the elliptic curve ElGamal function. There are three on the random oracle model [2,3,4], therefore we have three versions of PSEC: nd PSEC-3.These schemes satisfy the above-mentioned target (security, ybrid security). (except PSEC-1 for the hybrid security)
2.2 Intended ap	oplications
(1) PSEC-1:	1
- Key distrib	ution for a symmetric encryption (at most 128 bit key size)
- Encrypted o	communication for small size data (at most 128 bit data size)
(2) PSEC-2.	
- Key distrib	ution for a symmetric encryption (no restriction on the size)
- Encrypted o	communication in a hybrid usage with symmetric encryption, especially
envelope ty	/pe (key distribution and data transmission are synchronized)
(3) PSEC-3:	
- Key distrib	ution for a symmetric encryption (no restriction on the size)
- Encrypted o	communication in a hybrid usage with symmetric encryption, especially
``envelope	type" (key distribution and data transmission are synchronized)
- Encrypted a	communication in a hybrid usage with symmetric encryption especially

Encrypted communication in a hybrid usage with symmetric encryption, especially ``session type'' (only once key distribution in the opening phase of a session, and many times data transmissions during the session)

1/2

_

Information for each entry item is restricted to the designated	Dessint	
pages. However, the applicant may decide how much page	Number	
space to assign for any individual entry item.		

2.3 Basic theory and techniques

(1) The elliptic curve ElGamal encryption function as a primitive encryption function.
(2) Our novel three conversion methods [2,3,4], by which we have three versions:
PSEC-1, PSEC-2, PSEC-3. Especially PSEC-2 and PSEC-3 are the first public-key encryption schemes whose hybrid usages with symmetric encryption are proven to be secure in the strongest sense under reasonable assumptions and random oracle model.
(3) In the conversion of PSEC-3 [4], ``session type'' (only once key distribution in the opening phase of a session, and many times data transmissions during the session) of a hybrid usage with symmetric encryption is available. In addition, the overhead of the conversion is almost nothing if practical hash functions such as SHA-1 are employed, namely the conversion is optimal in the performance.

References:

[1] Bellare, M. and Rogaway, P. : Optimal Asymmetric Encryption, Proc. of Eurocrypt'94, LNCS 950, Springer-Verlag, pp.92-111 (1995).

[2] Fujisaki, E. and Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost, Proc. of PKC'99, Springer-Verlag, LNCS 1560, pp. 53--68 (1999).
[3] Fujisaki, E. and Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes, Proc. of Crypto'99, Springer-Verlag, LNCS 1666, pp. 535--554 (1999).
[4] Okamoto, T. and Pointcheval, D.: OCAC: an Optimal Conversion for Asymmetric Cryptosystems, manuscript (2000).

2/2