
1

Minalpher

DIAC 2014

Yu Sasaki1, Yosuke Todo1, Kazumaro Aoki1,

Yusuke Naito2, Takeshi Sugawara2, Yumiko Murakami2,

Mitsuru Matsui2, Shoichi Hirose3

1: NTT 2: Mitsubishi Electric 3: Fukui University

2

Minalpher [mɪnˈælfə]

Alpha → Alpher → Min-alpher → Minalpher

How to pronounce

3

Minalpher is already a winner
in the categories of…

Longest Name: 9 chars
 with AVALANCHE, Enchilada and Raviyoyla

Longest Document: 70 pages
 we designed everything from scratch

4

Minalpher: Design Concepts
Easy to Use in Practice

• 128-bit security (with 256-bit permutation)

– 128-bit confidentiality

– 128-bit authenticity

• Additional security in misuse scenarios

– nonce repetition (nonce misuse)

– release of unverified plaintext (decryption misuse)

5

• One algorithm for various platforms

– Fully parallelizable mode (fast on high-end platforms)

– Simple, repetitive structure (small on embedded systems)

• Additional functionalities

– MAC-only mode (faster than ciphertext-discarding AEAD)

– Associated data reuse (faster 2nd time and afterwards)

– Incremental computation (faster in nonce reuse scenario)

• No Patent Submitted

Minalpher: Design Concepts
Easy to Use in Practice

6

DESIGN

7

Minalpher (AEAD mode): Overview

8

Minalpher (MAC mode): Overview

y denotes a root of
 Y32+Y3+Y2+x=0,
where x is a root of
 X8+X7+X5+X+1=0

9

Design Parameters

 Key Size 128 bits

 Nonce Size 104 bits

 Tag Size 128 bits

 Block Size 256 bits

(secret message number is not supported in Minalpher)

Max Size of AD+MSG in the AEAD mode 2104 – 1 bits

Max Size of MSG in the MAC mode 2104 – 1 bits

10

Minalpher-P: 256-bit Permutation

• Nibble-wise (4-bit) Architecture
– 1 block = 256 bits = 64 nibbles

• 17.5-round Involutive SPN Structure
– SN (SubNibble): An Involutive 4-bit S-box

– SR (ShuffleRows): Byte shuffle + Nibble swap

– MC (MixColumns): A Binary 4x4 Matrix

• P = P-1 except round constants

11

Minalpher-P: One Round

0xB 0x3 0x4 0x1
0x2 0x8 0xC 0xF
0x5 0xD 0xE 0x0
0x6 0x9 0xA 0x7

12

SECURITY

13

Security of Tweakable Even-Mansor

• Tweakable Even-Mansor (TEM) is a 128-bit Strong
Tweakable Pseudorandom Permutation (STPRP)
in the ideal permutation model.

Minalpher-P

0
K ǁ flag ǁ N

L

Minalpher-P

M
yi (y+1)j L

C
Tweakable Even-Mansor Encryption with Minalpher -P

14

Security of Mode of Operation

• Minalpher achieves 128-bit security
 for both privacy and authenticity

15

Security in Misuse Scenarios

Privacy
￢RUP RUP

￢NR 128-bit INT-CCA 128-bit INT-CCA

NR 128-bit INT-CCA 128-bit INT-CCA

Authenticity
￢RUP

￢NR 128-bit IND-CPA

NR 128-bit BW-PRF

• Minalpher achieves full authenticity and some privacy
even in the following misuse scenarios:

– Release of unverified plaintext (RUP) , Nonce repetition (NR)

BW-PRF: Block-wise pseudo-random function
 Blocks ct[i] are indistinguishable from RF(K, N, A, pt[i])

Enc

K, N, A, pt[1]… pt[n]

ct[1]…ct[n], tag

RF

ct[1]

K, N, A, pt[1]

RF

ct[2]

K, N, A, pt[2]

RF*

tag

K, N, A, pt[1]…pt[n]

distingishable?

16

Security against Various Cryptanalysis

• 128-bit key + 256-bit block

– The structure prevents a class of cryptanalysis requiring

at least 2128 cost, e.g. MitM attacks, rectangle attacks.

• Enough Security Margin

– Differential/linear characteristic probability at most 2-128

in 7 rounds out of the full 17.5 Minalpher-P rounds.

– No 12-round attacks of Minalpher(-P) detected so far,

e.g. boomerang attacks, amplified boomerang attacks,

integral attacks, impossible differential attacks,

truncated differential attacks, rebound attacks, etc.

17

PERFORMANCE

18

Hardware implementation

• Small S-box (4x4) and regular structure enable efficient
and scalable Minalpher-P circuits

– No need for a key-scheduling circuit

– Small S-box based design common in lightweight crypto

– Involutive property minimizes the number of selectors

• Three different hardware architectures are shown in the
document

– High-speed core, mid-range core and low-area coprocessor

– Evaluated with an open-source library: NanGate 45-nm CMOS

• Further high throughput is possible if parallelized

19

256-bit Alpha

Perm.

LK

update

T

256

256

256

256

128 256

256

S T M

C
o
u
n
te

r

Const

gen.

Data in

Data out

5 256

256
256

256

256 256

High-speed

core Sequencer

Data in

Data out

Control

High-Speed Core
Area [kGE] Throughput [Mbps]

Minalpher-P Enc. and Dec., 1-round/cycle 4.96 7,771.71

AES Enc. Only, 1-round/cycle 10.49 1,587.50

Minalpher 14.32 6,103.96

Fast & small 4-bit S-box

No selector at the main path

Very small constant generator

20

Low-Area Coprocessor
Area [kGE] Throughput [Mbps]

Minalpher-P, Enc. and Dec., 16-bit datapath 2.70 375.06

AES Enc. only, 8-bit datapath 3.71 50.52

Minalpher 2.81 369.34

S

S

S

S

4

4

4

4

M

Data

manager

C
o
u
n
te

r
Const

gen.5

Data out

Data in

16

16

16

16

16

16

4

4

4

4

4

4

4

4

Low-area core

16-bit Alpha

Perm.

Sequencer

16 16

address

data

we

control

32

16

1

Fast & Small 4-bit S-box (again)

Almost no selectors
at the main path

Complexity of ShuffleRows
can be absorbed in the shift-
register layer

21

Minalpher on Intel 64 Architecture

• Minalpher is designed to be well-suited on Intel 64 platform.

• The vpshufb instruction works very efficiently on SN (SubNibbles)
and SR (ShuffleRows).

• Parallel block implementation can achieve faster speed.

Processor Implementation
Method

Data Length / Cycles per byte

31B 63B 1KB 8KB 64KB

Core i7-3770 (Ivy Bridge) 1-block 23.1 19.1 14.6 14.4 14.4

Core i7-3770 (Ivy Bridge) 2-block parallel 23.4 16.5 10.0 9.6 9.6

Core i7-4770 (Haswell) 4-block parallel --- --- --- --- 6.3*

*Estimation based on the implementation of Minalpher-P

22

Round Function on Ivy/Sandy Bridge
(1-block implementation)

Each nibble is stored in an octet of an XMM register.
Each register contains both rows of A and B.

4 pshufb 4 pshufb 4 (pslldq + pxor) 6 pxor 4 pxor

XMM Register

23

vpshufb xmm0, xmm15, xmm0 vpxor xmm8, xmm4, xmm5

vpshufb xmm1, xmm15, xmm1 vpxor xmm0, xmm8, xmm7

vpshufb xmm2, xmm15, xmm2 vpxor xmm1, xmm8, xmm6

vpshufb xmm3, xmm15, xmm3 vpxor xmm8, xmm6, xmm7

vpshufb xmm0, xmm0, xmm14 vpxor xmm2, xmm8, xmm5

vpshufb xmm1, xmm1, xmm13 vpxor xmm3, xmm8, xmm4

vpshufb xmm2, xmm2, xmm12 pxor xmm0, [RC(r)0]

vpshufb xmm3, xmm3, xmm11 pxor xmm1, [RC(r)1]

vpslldq xmm4, xmm0, 8 pxor xmm2, [RC(r)2]

vpslldq xmm5, xmm1, 8 pxor xmm3, [RC(r)3]

vpslldq xmm6, xmm2, 8

vpslldq xmm7, xmm3, 8

pxor xmm4, xmm0

pxor xmm5, xmm1

pxor xmm6, xmm2

pxor xmm7, xmm3

A Code Example of One Round

State-In

State-Out

SN

SR

XOR

MC

RC

S-box table is stored in xmm15

SR table is stored in xmm11-14

24

Minalpher on Low-end Microcontrollers

• Minalpher is designed to be implemented in a small
footprint on low-end microcontrollers

– The architecture Minalpher(-P) is simple and repetitive

– A single involutional 4-bit S-box

– Multiplying “y” in the tweak update is simple
(3 byte-xors and x*2 in GF(28))

• High speed implementation is also possible

– Two adjacent 4-bit S-boxes can be regarded as an 8-bit
lookup table, which significantly improves performance.

25

Design Goal ROM
(Bytes)

RAM
(Bytes)

Speed (cycles)

Init AD Enc / Dec

Small 510 214 90,235 45,302 90,992/91,081

Fast 1,275 470 16,805 8,166 16,447/16,669

Init: Initialization (computing L and L’)
AD: Processing of an associate data block
Enc/Dec: Processing of an encryption/decryption block

Implementation Results

• Target processor: RL78 (CISC microcontroller)

• Two Implementations

– Small: minimizing ROM size

– Fast: maximizing speed

26

Minalpher: Easy to use with simple and unique design

– 128-bit security for privacy and authenticity

– Supporting MAC mode

– Security in misuse scenarios

– Fixed associate data reuse

– Incremental AE/MAC

– Fully parallelizable

– Lightweight tweak generation

– Involutive permutation

– Small S-box

Conclusions

27

Thank you!

