PSEC-KEM Specification

NTT Information Sharing Platform Laboratories, NTT Corporation

October 12, 2001

Contents

1 Introduction

1.1

OVErVIEW . . . v o e e

2 Notation

3 Data types and conversions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

BitString-to-OctetString Conversion(BS20SP)
OctetString-to-BitString Conversion(OS2BSP)
Integer-to-OctetString Conversion(I20SP)
OctetString-to-Integer Conversion(OS2IP)
Field Element-to-Integer Conversion(FE2IP)
Integer-to-Field Element Conversion(I2FEP)
FieldElement-to-OctetString Conversion(FE20SP)
OctetString-to-FieldElement Conversion(OS2FEP)
EllipticCurvePoint-to-OctetString Conversion (ECP20SP) . .

3.10 OctetString-to-EllipticCurvePoint Conversion(OS2ECPP) . .

4 Key types

4.1
4.2

PSEC privatekeyo
PSEC publickey

5 Cryptographic primitives

5.1
5.2
5.3

KGP-PSEC o
EP-PSEC
DP-PSEC

6 Key encapsulation mechanisms

6.1

ES-PSEC-KEM
6.1.1 Encryption operation
6.1.2 Decryption operation.

12
13
13

14
14
14
14

Encoding methods

7.1 EME-PSEC-KEM
7.1.1 Encoding operation EME-PSEC-KEM-A
7.1.2 Encoding operation EME-PSEC-KEM-B
7.1.3 Decoding operation EME-PSEC-KEM-C
7.1.4 Decoding operation EME-PSEC-KEM-D

Auxiliary techniques

8.1 Hash functions oo
81.1 SHA-1

8.2 Key derivation functions oo
821 MGF1

Security requirements of parameters

Recommended values of parameters

16
16
16
17
17
18

18
18
18
18
19

20

20

1 Introduction

This document provides a specification for implementing PSEC-KEM, which
is a key encapsulation mechanism(KEM). We can utilize the mechanism for
realizing key agreement schemes. This document covers the following issues:

e cryptographic primitives: KGP-PSEC, EP-PSEC, DP-PSEC
e key encapsulation mechanisms: ES-PSEC-KEM

This specification is compatible with the PSEC-KEM in ISO/IEC JTC1/SC27
draft [1]. For the usage of KEM in the hybrid encryption applications, see

[1].
1.1 Overview
This document is organized as follows:
e Section 1 is an introduction.
e Section 2 defines some notations.
e Section 3 defines some data types and conversions.

e Section 4 defines the PSEC private and public keys used in KGP-
PSEC, EP-PSEC, DP-PSEC.

e Section 5 defines several cryptographic primitives, for the PSEC-KEM
key encapsulation mechanism.

e Section 6 defines the key encapsulation mechanism.

e Section 7 defines the encoding method for the key encapsulation mech-
anism.

e Section 8 defines some of the auxiliary functions used in this document.

2 Notation

N
a:=>b
(a1a0)16
I,

@)
0.1y

{0, 1}

{0,1,---,255}¢
{0,1,---,255}*
I

®

[y]

ly]

a mod m

the set of natural integers

give variable a the value of expression b

radix-16 positional notation ag + 16 - a1

a finite field with ¢ elements, where ¢ is a prime.
a point at infinity on an elliptic curve

the set of all bit strings of length 4

o0 .

UJ{o,1’

i=0

the set of all octet strings of length ¢
o

J{o,1,---,255}"

i=0

a concatenation operator for two bit strings or a con-
catenation operator for two octet strings, for example,
(0,1,0,0) (] (1,1,0) = (0,1,0,0,1,1,0) for bit strings,
(4,3) 1| (6,2) = (4,3,6,2) for octet strings

the bit-wise exclusive-or operation

the least integer greater than or equal to y

the greatest integer less than or equal to y

the least nonnegative integer b which satisfies m/|(b— a)
for a,m € N

The concatenation operator ’||” is often omitted.

3 Data types and conversions

The schemes specified in this document involve operations using several
different data types. Figure 1 illustrates which conversions are needed and
where they are described.

Point on an

Elliptic Curve ECP20SP(P, 1)
> Octet String M
P=(z,y)or O OS2ECPP (M, 1)

A

n=1[1/8], M;e{0,1,...,255}

Octet String
M = MoMy -+ My

x,y : Field Element

Nonnegative

Y

FE2IP(a)
Field Element a < .
I2FEP(z) integer x

(1'g)dsozsd
(1‘W)dSdzsO

Y

Bit String
B =DByBy---B1

B; € {0, 1}

Figure 1: Converting between data types

3.1 BitString-to-OctetString Conversion(BS20SP)

Bit strings should be converted to octet strings as described in this section.
Informally, the idea is to pad the bit string with 0’s on the left to make its
length a multiple of 8, then chop the result up into octets. Formally, the
conversion routine, BS20SP (B, 1), is specified as follows:

Input:
B : a bit string of length [bits
[: an integer

Output:

M : an octet string of length n = [[/8] octets

Steps:
Convert the bit string B = BgB;...B;_1 to an octet string M =
MyMi ... M, _4 as follows:

1. For0<i<n—1, let:

M; =B g gn-1-)Bi-7-8n-1-i) - -- Bi-1-8(n—1-4)-

2. Set the leftmost 8n—[bits in My to 0’s, and the rightmost [+8—8n
bits to B()Bl e Bl+7—8n‘
3. Output M.

3.2 OctetString-to-BitString Conversion(OS2BSP)

Octet strings should be converted to bit strings as described in this sec-
tion. Informally, the idea is simply to view the octet string as a bit string.
Formally, the conversion routine, OS2BSP (M, 1), is specified as follows:

Input:
M : an octet string of length n = [1/8] octets
[. an integer

Output:
B : a bit string of length [bits

Steps:

Convert the octet string M = MoM; ... M, 1 to a bit string B =
ByBi ... Bj_1 as follows:

1. For 0 < <n—1, set:

By 8 8(n-1-9Bi-7-8(n-1-i) - - - Bi—1-8(n—1-i) = M;.

2. Ignore the leftmost 8n — [bits of My, and set BoBj ... Bji7_sy
to the rightmost [4+ 8 — 8n bits of M.
3. Output B.

3.3 Integer-to-OctetString Conversion(I120SP)

Integers should be converted to octet strings as described in this section.
Informally, the idea is to represent the integer in binary and then convert
the resulting bit string to an octet string. Formally, the conversion routine,
120SP(z,1), is specified as follows:

Input:
T : a nonnegative integer
[. an integer
Output:

M : an octet string of length n = [1/8] octets

Errors:
“invalid”
Steps:

1. If > 2, assert “invalid” and stop.
2. Determine the z’s base-256 representation, z; € {0,---,255} such
that

T=2,1250"D g 528002 98 g
3. For0<i<n-1,set M; :=x,_1_;, and let
M := MoMy ... M, 1.
4. Output M.

3.4 OctetString-to-Integer Conversion(OS2IP)

Octet strings should be converted to integers as described in this section.
Informally, the idea is simply to view the octet string as the base 256 repre-
sentation of the integer. Formally, the conversion routine, OS2IP(M, 1), is
specified as follows:

Input:
M : an octet string of length n = [1/8] octets
[. an integer

Output:
x : an integer

Steps:

Convert M = MyMj ... M,_1 to an integer, x, as follows:

1. View each M; as an integer in {0,...,255}, and compute

n—1
T = Z 28("_1_i)M¢ mod 2.
=0

2. Output z.

3.5 Field Element-to-Integer Conversion(FE2IP)

Field elements should be converted to integers as described in this section. A
field element should be represented as a polynomial with integer coefficients,
which can be represented as a sequence of the coefficients. Informally, the
idea is simply to view the sequence of the coefficients as the radix-q repre-
sentation of the integer, where ¢ is the characteristic of the field. Formally,
the conversion routine, FE2IP(a), is specified as follows:

System Parameters:
IF,m : a finite field with ¢ elements where ¢ is a prime, and m > 0 is
an integer
Input:
a : a field element in IFm
Output:
x : an integer in {0,...,¢"™ — 1}
Steps:
Convert field element a to integer x as follows:
ifm=1:
Field element a must be represented as an integer in {0,...,¢"™ —
1}.
1: Let z := a.
2: Output z.
ifm>1:
Field element a must be represented as a polynomial of at most
(m —1)-th degree with coefficients in {0,...,¢—1}. Let 3 be the
variable of the polynomial.
1: Determine the coefficients a; € {0,...,¢g—1} fori € {0,...,m—
1} that satisfy

m—1)
a= Z a; 3.
=0
2: Compute
m—1]
T = Z a;q".
=0
3: Output x.

3.6 Integer-to-Field Element Conversion(I2FEP)

Integers should be converted to field elements as described in this section. A
field element should be represented as a polynomial with integer coefficients,
and it can be represented as a sequence of the coefficients. Informally, the
idea is to represent the integer with radix-¢g positional number system where
q is the characteristic of the field, and then convert the each digit to the each
coefficient of the polynomial. Formally, the conversion routine, I2FEP(z),
is specified as follows:

System Parameters:
IFym : a finite field with ¢™ elements where ¢ is a prime, and m > 0 is
an integer

Input:
x : an integer in {0,...,¢"™ — 1}

Output:
a : afield element in IFym
Steps:
Convert integer z to field element a as follows:
ifm=1:
A field element of IFy» must be represented as an integer in
{0,...,¢™ —1}.
1: Let a :==.
2: Output a.
ifm>1:
A field element of IF,» must be represented as a polynomial of
at most (m — 1)-th degree with coefficients in {0,...,q —1}. Let
B be the variable of the polynomial.
1: Expand z into it’s radix g representation z; € {0,...,q — 1}
for i € {0,...,m — 1} that satisfies

m—1]
T = xiq'.
=0
2: Compute
m—1
a = z; 3"
i=0
3: Output a.

3.7 FieldElement-to-OctetString Conversion(FE20SP)

The conversion routine, FE20SP(a,), is specified as follows:

Input:

a : afield element

Il : an integer
Output:

M : an octet string
Steps:

1: Let
M :=120SP(FE2IP(a),1).

2: Output M.

3.8 OctetString-to-FieldElement Conversion(OS2FEP)
The conversion routine, OS2FEP (M, 1), is specified as follows:

Input:

M . an octet string

Il : an integer
Output:

a : a field element
Steps:

1: Let

a := I2FEP(OS2IP(M,1)).
2: Output a.

3.9 EllipticCurvePoint-to-OctetString Conversion (ECP20SP)

Elliptic curve points should be converted to octet strings as described in
this section. Informally, if point compression is being used, the idea is that
the compressed y-coordinate is placed in the leftmost octet of the octet
string along with an indication that point compression is on, and the x-
coordinate is placed in the remainder of the octet string; otherwise if point
compression is off, the leftmost octet indicates that point compression is off,
and remainder of the octet string contains the x-coordinate followed by the
y-coordinate. Formally, the conversion routine, ECP20SP(P, 1), is specified
as follows:

Options:
E : an elliptic curve parameter
R : Compressed, Uncompressed, or Hybrid
Input:
P : apoint on an elliptic curve over IF m
I . an integer
Output:
M : an octet string of length n
n=1 if P=20,
where ¢ n=1[I/8] +1 if P # O and R is Compressed,
n=2[1/8] +1 if P # O and R is Uncompressed or Hybrid.
Steps:

Convert P to an octet string M = MyM; ... M, _ as follows:
1. If P = O, output M := (00)15 .
2. If P = (x,y) # O and R = Compressed, proceed as follows:

2.1. Set octet string X := FE20SP(x,).

2.2. Derive from y a single bit § as follows (this allows the y-
coordinate to be represented compactly using a single bit):
2.2.1. If q is an odd number, set 7 := yg mod 2 where y =

Ym—18"" 1+ F 18 + yo.

10

222 If ¢q = 2 ;set g := 0 if x = 0, otherwise compute
2 =2m 1" 1+ + 218+ 2 such that z = yx~! and
set y := 2g.
2.3. If § = 0, assign the value (02)16 to the single octet L. If
§ = 1, assign the value (03)16 to the single octet L.
2.4. Output M = L||X.

3. If P=(x,y) # O and R = Uncompressed, proceed as follows:

3.1. Set octet string X := FE20SP(x,).
3.2. Set octet string Y := FE20SP(y,).
3.3. Output M := (04)6|| X Y.

4. If P = (x,y) # O and R = Hybrid, proceed as follows:

4.1. Set octet string X := FE20SP(x,).
4.2. Set octet string Y := FE20SP(y,).
4.3. Derive from y a single bit g as follows (this allows the y-
coordinate to be represented compactly using a single bit):
4.3.1. If ¢ is an odd number, set § := yo mod 2 where y =
Ym-1B" "+ + 1B+ vo.

4.3.2. If ¢ = 2 set § := 0 if * = 0, otherwise compute
2 =2m 1"+ + 218+ 2 such that z = yx~! and
set y := 2g.

44. If § = 0, assign the value (06)16 to the single octet L. If
g = 1, assign the value (07)16 to the single octet L.

4.5. Output M := L|| X||Y.

3.10 OctetString-to-EllipticCurvePoint Conversion(OS2ECPP)

Octet strings should be converted to elliptic curve points as described in this
section. Informally, the idea is that, if the octet string represents a com-
pressed point, the compressed y-coordinate is recovered from the leftmost
octet, the z-coordinate is recovered from the remainder of the octet string,
and then the point compression process is reversed; otherwise the leftmost
octet of the octet string is removed, the xz-coordinate is recovered from the
left half of the remaining octet string, and the y-coordinate is recovered
from the right half of the remaining octet string. Formally, the conversion
routine, OS2ECPP (M, 1), is specified as follows:

Option:
E . an elliptic curve parameter
Input:
M : an octet string that is either
the single octet (00)16,
an octet string of length n = [1/8] + 1, or
an octet string of length n = 2[1/8] +1
[: an integer

11

Output:
P

Errors:

an elliptic curve point

“invalid”

Steps:

Convert M to a point P on E as follows:

1. If M = (00)46 , output P := O.
2. If M has length [1/8] 4 1 octets, proceed as follows:

2.1. Parse M = L||X as a single octet L followed by [I/8] octets
X.
2.2. Set x := OS2FEP(X,1).
23. If L = (02)16, set § := 0, and if L = (03)16, set § := 1.
Otherwise assert “invalid” and stop.
2.4. Derive from @ and 7 elliptic curve point P := (x,y), where:
2.4.1. If g is an odd number, compute the field element w :=
x3 + ax + b ,and compute a square root v of w in IFgm.
Assert “invalid” and stop if there are no square roots in
IF,m , otherwise set y := v if By = y mod 2, and set y :=
—vif o # § mod 2, where y = v, 1 8™+ - -+y18+70.
24.2. fg=2and =0, set y := b2 ' in IFym.
24.3. If ¢ = 2 and « # 0, compute the field element v :=
r+a+bxr~?in IF;m, and find an element z = Zm—10™ 1+
-+ 218 + 2o such that 22 + z = v in IFgm. Assert
“invalid” and stop if no such z exists, otherwise set y :=
xz in Fyn if 29 = ¢, and set y := x(z + 1) in Fym if
20 # Y-
2.5. Output P := (zx,y).

. If M has length 2[1/8] + 1 octets, proceed as follows:

3.1. Parse M = L||X||Y as a single octet L followed by [l/8]
octets X followed by [1/8] octets Y.

3.2. Check that L = (04)16 or (06)16 or (07)16 If L 7& (04)16 or
(06)16 or (07)16, assert “invalid” and stop.

3.3. Set & := OS2FEP(X,).

3.4. Set y := OS2FEP(Y,1).

3.5. If P := (x,y) does not satisfy the defining equation of elliptic
curve F/, then assert “invalid” and stop.

3.6. Output P := (z,y).

4 Key types

In this section, two types of keys are defined: PSEC private key and PSEC
public key, both of which are used in three cryptographic primitives (KGP-
PSEC, EP-PSEC, DP-PSEC) of PSEC-KEM.

12

4.1 PSEC private key
A PSEC private key is the following value:

e s, a nonnegative integer

4.2 PSEC public key

A PSEC public key is the 4-tuple (E, W, KDF,hLen), where the compo-
nents have the following meanings:

E, an elliptic curve parameter

e W, apoint on F

e KDF, the choice from key derivation functions
e hlen, a nonnegative integer

An elliptic curve parameter F is the 9-tuple (¢, m, f(8), a, b, P,p,pLen,gmLen),
where the components have the following meanings:

e ¢, a prime number

e m, a positive integer

e f(), a monic irreducible polynomial of degree m over IF m
e a, an element in IFym

e b, an element in IFym

e P, a point on an elliptic curve

— x, an element in IFjm

— vy, an element in IFym

y =x3+azx+b (¢>3)
Y +zrzy=x3+ax?+b (¢=2)

e p, a prime, the order of P
e pLen, the value of [log, p]

e gmLen, the value of [log, ¢™]

In a valid PSEC public key, W = sP holds, where s is a PSEC private
key as decribed in Section 4.1.

Note :
K DF shall be one of the key derivation functions in Section 8.2.

13

5 Cryptographic primitives

In this section, three cryptographic primitives are specified.

5.1 KGP-PSEC
KGP-PSEC(E, KDF, hLen) is defined as follows:

Input : E an elliptic curve parameter

KDF the choice from key derivation functions

hLen a nonnegative integer
Output : PK PSEC public key, (E, W, KDF,hLen)

s PSEC private key, a nonnegative integer, 0 < s < p
Steps :

1. Generate a random integer s € {0,---,p — 1}.
2. Let W :=sP.
3. Output PK = (E,W,KDF,hLen) and s.

5.2 EP-PSEC
EP-PSEC(PK, «) is defined as follows:

Input : PK PSEC public key
« random value, a nonnegative integer, 0 < a < p
Output : Q a point on F

C1 apoint on E
Assumptions : public key PK is valid.
Steps :

1. Let Q := alV.
2. Let Cy := aP.
3. Output (@, C1).

5.3 DP-PSEC
DP-PSEC(PK, (1, s) is defined as follows:

Input : PK PSEC public key
C7 apoint on E
s PSEC private key, a nonnegative integer, 0 <
s<p
Output : Q a point on F

Assumptions : public key PK and private key s are valid.
Steps :

14

1. Let @ := sC;.

2. Output Q.

6 Key encapsulation mechanisms

A key encapsulation mechanism works just like a public-key encryption
scheme, except that the encryption algorithm takes no input other than
the recipient’s public key. Instead, the encryption algorithm generates a
pair (k, co), where k is an octet string of some specified length, and ¢y is an
encryption of k, that is, the decryption algorithm applied to ¢y yields k.

One can always use a public-key encryption scheme for this purpose, gen-
erating a random octet string, and then encrypting it under the recipient’s
public key. However, as we shall see, one can construct a key encapsulation
scheme in other, more efficient, ways as well.

PSEC-KEM consists of two operations.

e The encryption operation ES-PSEC-KEM-ENCRYPT(PK) that takes
as input public key PK and outputs ciphertext/key pair(cy, k).

e The decryption operation ES-PSEC-KEM-DECRYPT(PK, s,) that
takes as input public key PK, private key s and ciphertext ¢y, and
outputs key k.

6.1 ES-PSEC-KEM
6.1.1 Encryption operation

ES-PSEC-KEM-ENCRYPT(PK) is defined as follows:

Input : PK PSEC public key
Output : co an octet string

k an octet string
Assumptions : public key PK is valid.
Steps :

1. Let (a, k,r) := EME-PSEC-KEM-A(PK). (See Section 7.1.1.)
2. Let (Q,C1) := EP-PSEC(PK,). (See Section 5.2.)
3. Let ¢p := EME-PSEC-KEM-B(PK,Q,C1,7). (See Section 7.1.2.)

4. Output (co, k).

15

6.1.2 Decryption operation

ES-PSEC-KEM-DECRYPT(PK, s, ¢p) is defined as follows:

Input : PK PSEC public key
s PSEC private key, a nonnegative integer, 0 <
s<p
Co an octet string
Output : K an octet string
Errors : “invalid”
Assumptions : public key PK and private key s are valid.
Steps :
1. Let (C1,c2,9) := EME-PSEC-KEM-C(PK,cp). (See Section 7.1.3.)

If the decoding operation returns “invalid,” then assert “invalid” and
stop.

. Let Q' := DP-PSEC(PK,C1,s). (See Section 5.3.)

Let (¢/, k'):= EME-PSEC-KEM-D(PK, c2,9,Q’). (See Section 7.1.4.)

Check C; := DP-PSEC(PK, P,o’). (See Section 5.3.)
If it holds, output k. Otherwise, assert “invalid” and stop.

7 Encoding methods

This section specifies one encoding method for the key encapsulation mech-
anism.

7.1

EME-PSEC-KEM

7.1.1 Encoding operation EME-PSEC-KEM-A
EME-PSEC-KEM-A (PK) is defined as follows:

Option : keyLen a nonnegative integer

Input : PK PSEC public key

Output : « a nonnegative integer, 0 < a < p
k an octet string
T an octet string

Steps :

1. Generate a random octet string r € {0, - - -, 255} [*Len/8],

2. Let H := OS2BSP(K DF(120SP(0,32) || r,pLen+128+keyLen), pLen+

128 + keyLen).

16

3. Parse H = t|| K/, where the bit length of ¢ is pLen + 128; the bit length
of k' is keyLen.

4. Let o := BS2IP(¢,pLen + 128) mod p.
5. Let k := BS20SP (K, keyLen).

6. Output («, k,r).

7.1.2 Encoding operation EME-PSEC-KEM-B
EME-PSEC-KEM-B(PK, @, C1,r) is defined as follows:

Option: R Compressed, Uncompressed or Hybrid
Input : PK PSEC public key
Q a point on F
C1 apoint on E
r an octet string
Output : ¢ an octet string
Steps :

1. Let ¢g := r ®KDF(I20SP(1, 32) || ECP20SP(C1, gmLen) || ECP20SP(Q, gmLen), hLen).
2. Let ¢ := ECP20SP(Cy, gmLen) || ca.

3. Output c¢y.

7.1.3 Decoding operation EME-PSEC-KEM-C
EME-PSEC-KEM-C(PK, ¢y) is defined as follows:

Option: R Compressed, Uncompressed or Hybrid
Input : PK PSEC public key

Co an octet string
Output: (€7 apointon F

co an octet string

g an octet string
Errors: “invalid”

Steps :

1. If the octet length of ¢ is less than or equal to [hLen/8], assert
“invalid” and stop.

2. Parse ¢y = g|| c2, where the octet length of ¢y is [hLen/8].

3. Let C} := OS2ECPP(g,qgmLen).
If OS2ECPP asserts “invalid,” assert “invalid” and stop.

4. Output (C1,c2,9).

17

7.1.4 Decoding operation EME-PSEC-KEM-D
EME-PSEC-KEM-D(PK, cq,9,Q’) is defined as follows:

Option : keyLen a nonnegative integer
Input : PK PSEC public key
C2 an octet string
g an octet string
Q' a point on F
Output : o a nonnegative integer, 0 < o/ < p
K an octet string
Steps :

1. Let 7’ := ¢ ® KDF(120SP(1, 32) || g || ECP20SP(Q’, gmLen), hLen).

2. Let b’ := OS2BSP(K DF(I120SP(0,32) || 7', pLen+128+keyLen), pLen+
128 + keyLen).

3. Parse h' = t'|| k", where the bit length of ¢’ is pLen + 128; the bit
length of k" is keyLen.

4. Let o := BS2IP(¢',pLen + 128) mod p.
5. Let k' := BS20SP(k", keyLen).

6. Output (o, k).

8 Auxiliary techniques

This section gives several examples of the techniques that support the func-
tions described in this document.

8.1 Hash functions

One hash function is recommended for the encoding methods in this docu-
ment: SHA-1.

8.1.1 SHA-1

SHA-1 is defined in FIPS PUB 180-1 [2]. The output length of SHA-1 is
160 bits, and the operation block size is 512 bits.

8.2 Key derivation functions

One mask generation function is recommended as a key derivation function
for the encoding methods in this document: MGF1 [3].
MGF1 is also called KDF1 in [1].

18

8.2.1 MGF1

MGF1 is a mask generation function based on a hash function.
MGF1(M,1) is defined as follows:

Options: Hash hash function
hashLen length in bits of the hash function output

Input: M seed from which mask is generated, an octet string
l intended bit length of the mask
l
Output: mask mask, an octet string of length {g—‘ octets
Errors: “invalid”
Steps:

1. Let Iy be the bit length of M. If [y + 32 is greater than the input
limitation for the hash function, assert “invalid” and stop.

l
2. Let cThreshold := | ———|.
b ¢l resho {hashLen—‘

3. Let M’ be the empty octet string.
4. Let counter := 0.

(a) Convert the integer counter to an octet string of length 32 bits:

C :=120SP(counter, 32).

(b) Concatenate M and C, and apply the hash function to the result
to produce a hash value:

H := Hash(M || C).
(c) Concatenate M’ and H to octet string M':
M= M| H.

(d) Let counter := counter + 1. If counter < cThreshold, go back
to step 4a.

l
5. Let mask be the leftmost {é—‘ octets of the octet string M’:
MoMy - Mgy

6. Output mask.

19

References

[1] V. Shoup. “A Proposal for an ISO Standard for Public Key Encryp-
tion (v.2.0),” ISO/IEC JTC1/SC27, N2918, http://shoup.net/papers/,
2001 Sep.

[2] FIPS PUB 180-1, “Secure Hash Standard (SHS),” U.S. Department of
Commerce / National Institute of Standards and Technology, April 17,
1995.

[3] RSA Laboratories, “PKCS #1 v2.1: RSA Encryption Standard,” draft
2, January 5, 2001.

A Security requirements of parameters
Security requirements of PSEC-KEM parameters are the following:
pLen > 160
hLen > 128
B Recommended values of parameters

Recommended values of PSEC-KEM parameters are the following:

pLen = 160
KDF = MGF1 (SHA-1, hashLen = 160)
hLen = 160

R = Compressed

keyLen = 256

20

