
Self Evaluation of PSEC-KEM

1 Introduction

This document describes the security assessment and performance of PSEC-

KEM, a key distribution scheme in public-key cryptosystems.

2 Design Policy and the Underlying Theory and

Techniques

PSEC-KEM is a version [4] modified to KEM (Key Encapsulation Mechanism)

from a public-key encryption with the strongest security, PSEC-2, which is

converted (by [1]) from the primitive elliptic curve encryption function, the

elliptic curve ElGamal encryption function.

PSEC-KEM inherits the various practical merits of the elliptic curve en-

cryption function (elliptic curve ElGamal encryption function), and is proven

to offer the strongest level of security (semantic security against adaptive chosen-

ciphertext attacks: IND-CCA2) under some assumptions.

We will show its security and performance results below.

2.1 Summary of Security

PSEC-KEM is semantically secure against adaptive chosen-ciphertext attacks

(IND-CCA2) (or non-malleable against adaptive chosen-ciphertext attacks (NM-

1



CCA2)) in the random oracle model, under the elliptic curve computational

Diffie-Hellman (CDH) assumption.

We will compare the security of PSEC-KEM with other encryption schemes

such as the elliptic curve (EC-)Cramer-Shoup, ECIES-KEM (see [4]) and el-

liptic curve (EC-)ElGamal. Here, we assume that EC-Cramer-Shoup and EC-

ElGamal are used for key distribution (i.e., KEM).

The following table summarizes the comparison of security.

Table 1: Comparison of Security

Scheme Provably Secure? Number-theoretical Functional Reduction

(IND-CCA2?) assumption assumption efficiency

PSEC-KEM Yes EC-CDH Truly random **

EC-Cramer-Shoup Yes EC-DDH UOWHF *

ECIES-KEM Yes EC-GDH Truly random **

EC-ElGamal No (broken) − − −

EC-CDH, EC-DDH and EC-GDH denote the elliptic curve versions of com-

putational Diffie-Hellman, decisional Diffie-Hellman and gap Diffie-Hellman as-

sumptions, respectively. ** denotes that the efficiency is almost optimal, and *

denotes that the efficiency is less than the almost optimal cases. The definition

of semantic security against adaptive chosen-ciphertext attacks (IND-CCA2) in

the scenario of KEM (key encapsulation mechanism) is slightly different from

2



that of the (public-key) encryption. See Section 3.2 in [4] for the definition.

2.2 Summary of Efficiency

Here we compare the efficiency of PSEC-KEM to that of other schemes (EC-

Cramer-Shoup, ECIES-KEM, and EC-ElGamal).

The parameter sizes for EL-Cramer-Shoup, ECIES-KEM, EC-ElGamal are

assumed to be the same as those of PSEC-KEM. In this table, we show the

required number of elliptic curve multiplications for each operation.

Table 2: Comparison of Efficiency

Scheme Encryption Decryption

PSEC-KEM 2 2

EC-Cramer-Shoup 5 3 (4∗)

ECIES-KEM 2 1 (2∗)

EC-ElGamal 2 1

∗: The case when an additional multiplication is required to check whether

a ciphertext is in the subgroup generated by the base point.

3 Security Proof of PSEC-KEM

In this section, we will prove that PSEC-KEM is semantically secure against

adaptively chosen-ciphertext attacks, under the the elliptic curve computational

Diffie-Hellman assumption and in the random oracle model.

3



Here, we view MGF as a random oracle. This effectively gives us two inde-

pendent random oracles,

G : BhLen → BpLen+128+KeyLen,

H : B32+2·qmLen → BhLen.

For simplicity, we useEC for ECP2OSP(C1, qmLen) andEQ for ECP2OSP(Q, qmLen).

Theorem 3.1 Let A be a (adaptively chosen-ciphertext attack) CCA2–adversary

against the “semantic security” (IND) of PSEC-KEM (K, E ,D), with advantage

ε and running time t, making qD, qG and qH queries to the decryption oracle,

and the random oracles G and H respectively. Then, there exists an algorithm

with success probability, ε′, can provide a list of (qH+qD) strings which includes

a correct answer of the elliptic curve computational Diffie-Hellman (CDH) prob-

lem regarding K and the running time t′, such that

ε′ ≥ ε

2(1 + 2−128)
− (qG + 3qD)(1 + 2

−128)
p

− 2qD + qG
2hLen

,

and

t′ ≤ t+ qH · (T +O(1)) ,

where T denotes the time complexity of computing two elliptic curve multiplica-

tion operations regarding K.

Note: If there exists an algorithm which outputs a list of (qH + qD) strings

including a correct answer of the computational Diffie-Hellman (CDH) problem,

then we can efficiently obtain the correct answer of the computational Diffie-

Hellman (CDH) problem, using the algorithm (by the random self-reducible

property of the CDH problem) [3, 4].

4



Advantage ε is defined as 2×Pr[A outputs correct answer b ∈ {0, 1}]−1, in

the underlying scenario.

Hereafter, we will repeatedly use the following simple result:

Lemma 3.2 For any probability events E, F and G

Pr[E ∧ F |G] ≤



Pr[E |F ∧ G]

Pr[F |G].

We prove theorem 3.1 in three stages. The first presents the reduction of al-

gorithm B for breaking the Computational Diffie-Hellman (CDH) problem to the

IND-CCA2 adversary A for PSEC-KEM. The second shows that the decryption

oracle simulation employed in this reduction works correctly with overwhelming

probability. Finally, we analyze the success probability of our reduction in to-

tal, through the incorporation of the above-mentioned analysis of the decryption

oracle simulation.

Note: The definition of IND-CCA2in the scenario of the key encapsulation

mechanism such as PSEC-KEM is slightly different from that of the (public-

key) encryption. See Section 3.2 in [4] for the definition.

3.1 Description of the Reduction

In this first part, we recall how reduction operates. Let A be an adversary

against the semantic security of PSEC-KEM with (K, E ,D), under chosen-

ciphertext attacks. Within time bound t, A asks qD, qG and qH queries to

the decryption oracle and the random oracles G and H respectively, and distin-

guishes keyK (either the correct key or just a random string) with an advantage

5



greater than ε. Let us describe the reduction B.

3.1.1 Top Level Description of the Reduction.

1. B is given public key PK including two points, P and W , on E and

another point C∗1 . The aim of B is to obtain a list of data including the

DH solution, Q∗, for (P,W,C∗1 ) such that logP W = logC∗1 Q
∗ (= s).

2. B randomly selects a bit b and two random strings, c∗2 ∈ BhLen and

K ∈ BkeyLen. B runs A on the public data, ciphertext c∗ = (EC∗, c∗2)

with EC∗ = ECP2OSP(C∗1 , qmLen) and K. B simulates the answers to

the queries of A to the decryption oracle and random oracles G and H ,

respectively. See the description of these simulations below.

3. A finally outputs answer b′. B then outputs the list of queries asked to H

(especially its EQ part), in which EQ∗ (i.e., Q∗) may be included.

3.1.2 Simulation of Random Oracles G and H.

The random oracle simulation has to simulate the random oracle answers, man-

aging query/answer lists G-List and H-List for the oracles G and H , respectively;

both are initially set to empty lists:

• For a fresh query δ = (EC,EQ) with EC �= EC∗ to H , the simulator

outputs a random value H(δ), and the pair (δ,H(δ)) is concatenated to

the H-List. For a fresh query r to G, it outputs a random value G(r), and

the pair (r,G(r)) is concatenated to the G-List.

6



• For a fresh query δ∗ = (EC∗, EQ) to H , the simulator randomly selects

H(δ∗) and the pair (δ∗, H(δ∗)) is concatenated to H-List. It calculates r =

c∗2 ⊕H(δ∗), and looks for a query r in the GList. When it does not exist,

the simulator randomly selects t ∈ BpLen+128 as t = [G(r)]pLen+128 , i.e.,

the (pLen+128) bit prefix ofG(r). It then calculates α = OS2IP(t) mod p,

and checks whether C∗1 = αP . If it holds, it calculates Q∗ = αW , which

is the solution of the DH problem with (P,W,C∗1 ) (and outputs Q∗). If

EQ = ECP2OSP(Q∗, qmLen), it sets [G(r)]keyLen = K if b = 0, and it

randomly selects [G(r)]keyLen if b = 1. In this case, (EC
∗, c∗2) is a valid

output (or correctly simulated output) of the encryption oracle in the real

scenario of IND-CCA2. If C∗1 �= αP , it randomly selects [G(r)]keyLen.

3.1.3 Simulation of the Decryption Oracle.

On query c = (EC, c2) to the decryption oracle, decryption oracle simulation

DS looks at query-answer (δ,H(δ)) ∈ H-List such that δ = (EC,EQ) (for any

EQ). If no such pair is found in H-List, “Reject” is returned. If such a pair

exists, it calculates r = c2 ⊕ H(δ), and it looks for a query r in the GList.

If it does not exist, it randomly selects G’s answer to r, G(r), and the pair

(r,G(r)) is concatenated to the G-List. It then calculates α = OS2IP(t) mod p,

where t = [G(r)]pLen+128. It checks whether EC = ECP2OSP(αP ) and EQ =

ECP2OSP(αW ). If either one of them does not hold, “Reject” is returned. If

both equations hold, DS outputs [G(r)]keyLen , i.e., keyLen bit suffix of G(r),

as key k.

7



3.1.4 Remarks.

When we find Q∗, we could output the expected result Q∗ and stop the reduc-

tion. But for this analysis, we assume the reduction goes on and that B only

outputs it, or the list of queries asked to H , once A has answered b′ (or after a

time limit).

The distribution of α in the simulation is a bit different from that in the real

situation. In the simulation, α is distributed uniformly in {0, 1, . . . , p− 1}, but

in the real situation it is a bit biased as α = OS2IP(t) mod p and t is uniform

in BpLen+128.

Since our coding method of an elliptic curve point is a one-to-one and onto

mapping, C1 = C
′
1 if and only if EC = EC

′, and Q = Q′ if and only if

EQ = EQ′.

3.2 Notations

In order to proceed to the analysis of the success probability of the above-

mentioned reduction, we first provide some notations. First, we denote with a

star (∗) all variables related to the challenge ciphertext c∗ = (EC∗, c∗2), obtained

from the encryption oracle. All other variables refer to the decryption query c,

asked by the adversary to the decryption oracle, and thus to be decrypted by

this simulation. We consider several events about queries to the random oracles

and the decryption oracle:

• AskH denotes the event that query (EC∗, EQ∗) has been asked to H , and

AskG denotes the event that query r∗ has been asked to G.

8



• GBad is the event that r∗ (= c∗2⊕H(EC∗, EQ∗)) is asked to G oracle and

EC∗ �= ECP2OSP(αP ), or EC∗ = ECP2OSP(αP ) but [G(r∗)]keyLen �= K

if b = 0, where α = OS2IP(t∗) mod p and t∗ = [G(r∗)]pLen+128 (bit b is

fixed in the reduction scenario). Note that the event GBad implies AskG.

As seen above, GBad is the only event that makes the simulation imperfect,

in the chosen-plaintext attack scenario.

• Fail denotes the event that the above decryption oracle simulator outputs

at least one wrong decryption answer among qD answers.

• Bad = GBad ∨ Fail.

• CBad denotes the union of the bad events, CBad = RBad ∨ EBad, where

– EBad denotes the event that EC = EC∗;

– RBad denotes the event that r = r∗;

• AskRE denotes the intersection of both events about the oracle queries,

AskRE = AskR ∧ AskE, where

– AskR denotes the event that r (= c2 ⊕H(EC,EQ)) has been asked

to G;

– AskE denotes the event that (EC,EQ) has been asked to H ;

Note that the Fail event is limited to the situation in which DS rejects a

ciphertext whereas it would be accepted by the actual decryption oracle. Indeed,

when DS accepts, we see that the ciphertext is actually valid and corresponds

to the output plaintext.

9



3.3 Analysis of the Decryption Oracle Simulation

We analyze the success probability of decryption oracle simulator DS.

3.3.1 Security Claim.

Lemma 3.3 When at most one ciphertext c∗ = (EC∗, c∗2) has been directly

obtained from the encryption oracle, the decryption oracle simulation DS can

correctly produce the decryption oracle’s answers to qD queries (ciphertext; c =

(EC, c2), c �= c∗) with probability greater than ε1, within time bound t1, where

ε1 ≥ 1−
(
(qG + 3qD)(1 + 2

−128)
p

+
qD

2hLen

)
,

t1 ≤ qH · (T +O(1)),

and T is the computational complexity of the operations of αP and αW .

Before we start the analysis, we recall that the decryption oracle simulator

is given the ciphertext c to be decrypted, as well as the ciphertext c∗ obtained

from the encryption oracle and both the G-List and H-List resulting from the

interactions with the simulator of the random oraclesG andH . If the ciphertext

has been correctly built by the adversary (r has been asked to G and (EC,EQ)

to H), the simulation will output the correct answer. However, it will output

“Reject” in any other situation, whereas the adversary may have built a valid

ciphertext without asking either query to the random oracles G and H .

10



3.3.2 Success Probability.

Since our goal is to show the probability of the event Fail. Granted ¬CBad ∧

AskRE, the simulation is perfect, and cannot fail. Thus, we have to consider the

complementary events:

Pr[Fail] = Pr[Fail ∧ CBad] + Pr[Fail ∧ ¬CBad ∧ ¬AskRE].

First we focus on the former term, Pr[Fail ∧ CBad]. CBad = RBad ∨ EBad, but

RBad never occurs. This is because: r = r∗ implies that α = α∗, C1 = C∗1 (i.e.,

EC = EC∗), Q = Q∗, and H(EC,EQ) = H(EC∗, EQ∗). Hence c2 = c∗2, i.e.,

c = (EC, c2) is equivalent to c
∗ = (EC∗, c∗2). Such c is not allowed as a query

to the decryption oracle. Thus, CBad = EBad. We will evaluate Pr[Fail∧EBad],

which is the probability that there exists at least one c among qD queries to the

decryption oracle such that c = (EC∗, c2) with c2 �= c∗2 (i.e., r �= r∗) satisfies

OS2IP([G(r)]pLen+128) ≡ OS2IP([G(r∗)]pLen+128) (mod p). The probability

of satisfying this equation for each c is at most 1+2
−128
p
. The adversary has a

(potential) chance to ask qG queries to check whether the equation holds, and

an additional chance for qD queries to decryption oracle. So in total,

Pr[Fail ∧ EBad] ≤ (qG + qD)(1 + 2
−128)

p
.

We now evaluate the latter term, Pr[Fail∧¬CBad∧¬AskRE]. Since CBad =

EBad and AskRE = AskR ∧ AskE, it is

Pr[Fail ∧ ¬EBad ∧ (¬AskR ∨ ¬AskE)]

≤ Pr[Fail ∧ ¬EBad ∧ ¬AskR] + Pr[Fail ∧ ¬EBad ∧ AskR ∧ ¬AskE].

11



For the former term, since r is never asked to G and is independent of r∗,

the probability that c is valid (i.e., α = OS2IP([G(r)]pLen+128) (mod p) and

EC = ECP2OSP(αP )) is at most 1+2
−128
p . Since the adversary has a chance to

issue qD queries to the decryption oracle,

Pr[Fail ∧ ¬EBad ∧ ¬AskR] ≤ qD(1 + 2
−128)

p
.

For the latter term, Pr[Fail ∧ ¬EBad ∧ AskR ∧ ¬AskE], r is queried to G,

but (EC,EQ) is never asked to H and is independent of (EC∗, EQ∗). So the

probability that r′ = c2⊕H(EC,EQ) is equivalent to r or G(r′) happens to be

consistent with C1 is at most
1

2hLen
+ 1+2

−128
p
. Since the adversary has a chance

to issue qD queries to the decryption oracle,

Pr[Fail ∧ ¬EBad ∧ ¬AskR] ≤ qD( 1
2hLen

+
1 + 2−128

p
).

As a consequence,

Pr[Fail] ≤ (qG + 3qD)(1 + 2
−128)

p
+
qD

2hLen
.

The running time of this simulator includes just the computation time of

αP and αW for all α values obtained from ciphertext c = (EC, c2), the corre-

sponding queries, (EC,EQ), in H-List, and the corresponding r values of G-List

and is thus at most

qH · (T +O(1)),

where T is the computational complexity of the operations of αP and αW .

12



3.4 Success Probability of the Reduction

This subsection analyzes the success probability of our reduction with respect

to the advantage of the IND-CCA2 adversary of PSEC-KEM. The goal of the

reduction is, given the elliptic curve parameters and (P,W,C∗1 ), to obtain a list

of qH values including Q
∗. Therefore, the success probability is obtained by the

probability that event AskH occurs during the reduction.

We thus evaluate Pr[AskH] by splitting event AskH according to event Bad.

Pr[AskH] = Pr[AskH ∧ Bad] + Pr[AskH ∧ ¬Bad].

First let us evaluate the first term.

Pr[AskH ∧ Bad] = Pr[Bad]− Pr[¬AskH ∧ Bad]

≥ Pr[Bad]− Pr[¬AskH ∧ GBad]− Pr[¬AskH ∧ Fail]

≥ Pr[Bad]− Pr[GBad | ¬AskH]− Pr[Fail]

≥ Pr[Bad]− Pr[AskG | ¬AskH]− Pr[Fail]

≥ Pr[Bad]− (qG + 3qD)(1 + 2
−128)

p
− 2qD + qG
2hLen

.

Here, Pr[Fail] ≤ (qG+3qD)(1+2
−128)

p + qD
2hLen is directly obtained from lemma 3.3,

and Pr[GBad | ¬AskH] ≤ Pr[AskG | ¬AskH] is obtained from the fact that event

GBad implies AskG. When ¬AskH occurs, H(EC∗, EQ∗) is unpredictable, and

r∗ = c∗2⊕H(EC∗, EQ∗) is also unpredictable. Hence Pr[AskG | ¬AskH] ≤ qG+qD
2hLen .

We then evaluate the second term.

Pr[AskH ∧ ¬Bad] = Pr[¬Bad] · Pr[AskH | ¬Bad]

≥ Pr[¬Bad] · Pr[A = b ∧ AskH | ¬Bad]

13



≥ Pr[¬Bad] · (Pr[A = b | ¬Bad]− Pr[A = b ∧ ¬AskH | ¬Bad]) .

Here, when ¬AskH occurs, H(EC∗, EQ∗) is unpredictable, thus r∗ = c∗2 ⊕

H(EC∗, EQ∗) is unpredictable, and so is b as well. This fact is independent from

event ¬Bad. Hence Pr[A = b∧¬AskH | ¬Bad] ≤ Pr[A = b | ¬AskH∧¬Bad] = 1/2.

Since the distribution of c∗ = (EC∗, c∗2) in this simulation scenario is a bit dif-

ferent ((1 + 2−128) times biased) from that of c∗ in the real situation,

ε

2(1 + 2−128)
+
1

2
≤ Pr[A = b] ≤ Pr[A = b | ¬Bad] · Pr[¬Bad] + Pr[Bad].

Therefore,

Pr[AskH∧¬Bad] ≥
(

ε

2(1 + 2−128)
+
1

2
− Pr[Bad]

)
−Pr[¬Bad]

2
=
ε/(1 + 2−128)− Pr[Bad]

2
.

Combining the evaluation for the first and second terms, and from the fact that

Pr[Bad] ≥ 0, one gets

Pr[AskH] ≥ ε

2(1 + 2−128)
− (qG + 3qD)(1 + 2

−128)
p

− qD + qG
2hLen

.

3.5 Complexity Analysis.

Since the major part of this reduction complexity lies in the simulation of the

decryption oracle, the time complexity of the overall reduction is

t′ = t+ qH · (T +O(1)),

where T is the computational complexity of the operations of αP and αW .

14



4 Evaluation by Implementation

In this section, we show the speed and memory usage when we implement ESIGN

in the C language. We use the recommended parameters in our specification.

The environment is as follows:

CPU Intel Pentium-III 600MHz

Memory 128 Mbytes

OS Microsoft Windows2000 SP2

Compiler Microsoft Visual Studio 6.0 Enterprise Edition

We measure the speed by counting the CPU clock. We show the average

speed of 1000 random data tests.

The speed is as follows:

Key generation 5.64 ms

Encryption 11.09 ms

Decryption 10.97 ms

The memory usage is as follows:

Key generation 7.30 Kbytes

Encryption 2.64 Kbytes

Decryption 2.39 Kbytes

References

[1] Fujisaki, E. and Okamoto, T.: Secure Integration of Asymmetric and Sym-

metric Encryption Schemes, Proc. of Crypto’99, Springer-Verlag, LNCS

1666, pp. 535–554 (1999).

15



[2] Bailey, D. V. and Paar, C.: Optimal Extension Fields for Fast Arithmetic in

Public-Key Algorithms, Proc. of Crypto’98, LNCS 1462, Springer-Verlag,

pp.472-485 (1998).

[3] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems.

In Eurocrypt’97, LNCS, Springer-Verlag, Berlin, 1997.

[4] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption

(v.2.0). ISO/IEC JTC1/SC27, N2918, http://shoup.net/papers/, 2001 Sep.

16


