

Proposal of addition of new cipher suites to TLS to support Camellia, EPOC, and PSEC

Shiho Moriai shiho@isl.ntt.co.jp NTT Laboratories

128-bit Block Cipher Camellia

Kazumaro Aoki^{*} Tetsuya Ichikawa[†] Masayuki Kanda^{*} Mitsuru Matsui[†] Shiho Moriai^{*} Junko Nakajima[†] Toshio Tokita[†]

- * NTT
- † Mitsubishi Electric Corporation

What's Camellia?

O128-bit Block Cipher

- Jointly developed by NTT and Mitsubishi
- Designed by experienced cryptanalysists and programmers

OSupports 128-, 192-, 256-bit keys

- Same interface as Advanced Encryption Standard (AES)
- Offer more security against exhaustive key search

Design Goals

OHigh level of security

- State-of-the-art cipher analysis technology
- Efficiency on multiple platforms
 - Software: 8-bit, 32-bit, 64-bit processors
 - Hardware: compact and high-performance

Software Performance (128-bit keys)

- On a Pentium III
 - 309 cycles/block (Assembly)
 - = 469 Mbps (1.13 GHz)
- OMuch faster than DES
- OComparable speed to the AES finalists

*The programs are written in assembly language by Aoki, Lipmaa, and Osvik. Each figure is the fastest as far as we know.

Hardware (128-bit keys)

OASIC (0.35µm CMOS)

- Small Size Hardware 11KGates
 - Smallest among existing 128-bit block ciphers
- High Performance Hardware

	Area [Kgates]	Throughput [Mbit/s]
MARS	2,936	226
RC6	1,643	204
Rijndael	613	1,950
Serpent	504	932
Twofish	432	394
Camellia	273	1,171
DES*	54	1,161

*DES is a 64-bit block cipher.

The above data (except Camellia) are presented by Ichikawa et al. at the 3rd AES conference.

Security Consideration

OCamellia provides strong security against differential and linear cryptanalysis.

- Moreover, Camellia was designed to offer security against other advanced cryptanalytic attacks:
 - truncated differential attacks,
 - higher order differential attacks,
 - interpolation attacks,
 - related-key attacks, ...

For more information...

OCamellia Home Page

http://info.isl.ntt.co.jp/camellia/

- Specification & Sample code
- Technical papers on design rationale, performance, software implementation techniques, and security evaluation

• Internet-Draft on description of Camellia will be available soon!

Public Key Algorithms EPOC and PSEC

Tatsuaki Okamoto Shigenori Uchiyama Eiichiro Fujisaki

NTT

Provable Security of Public Key Algorithms

OFlaw in RSA with PKCS #1 Ver.1

 Importance of security against adaptively chosen ciphertext attacks

OEPOC & PSEC

- Developed by Okamoto et al. (NTT)
- Provably secure under the random oracle model in the strongest sense (i.e., nonmalleable against adaptively chosen ciphertext attacks)

EPOC (Efficient Probabilistic Public-Key Encryption Scheme)

ONovelty

 Essentially different from any other previous schemes including RSA-Rabin and Diffie-Hellman

Security

 Provably as secure as factoring in the strongest sense

OEfficiency

• Compared with RSA(PKCS#1 Ver.2) with small e ($2^{16}+1$), encryption speed is slower, but decryption speed is faster.

PSEC (Provably Secure Elliptic Curve Encryption Scheme)

OSecurity

 Provably as secure as elliptic-curve Diffie-Hellman problem in the strongest sense

OEfficiency

 Almost as efficient as most common ECC, elliptic-curve ElGamal (Diffie-Hellman) scheme

Toward International Standards

OEPOC

■ IEEE P1363a (<u>royalty free</u> if selected)

OCamellia

- ISO/IEC JTC 1/SC27
- NESSIE (New European Schemes for Signature, Integrity, and Encryption)

Sample Code

- **OCamellia**
 - http://info.isl.ntt.co.jp/camellia/
- **OEPOC & PSEC**
 - http://www.nttmcl.com/sec/

Conclusion

- OCamellia is a 128-bit block cipher with high security and performance
 - suitable for bulk encryption
- OPSEC and EPOC are public-key algorithms with provable security and efficiency
 - suitable for key exchange and authentication

Conclusion (Cont.)

OAdd them to Transport Layer Security!!

```
enum { null, rc4, rc2, des, 3des, des0, idea, ..., camellia } BulkCipherAlgorithm
enum { rsa, diffie-hellman, epoc, psec }
KeyExchangeAlgorithm
enum { anonymous, rsa, dsa, epoc, psec }
SignatureAlgorithm
```