
Standards for Efficient Cryptography

SEC X.1: Supplemental Document
for Odd Characteristic Extension Fields

Nippon Telephone and Telegraph Corporation

Contact: Kazumaro Aoki, Tetsutaro Kobayashi, and Akira Nagai
(publickey@lab.ntt.co.jp)

Working Draft
March 2, 2009

Version 0.6

c©NTT 2008-2009

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Mathematical Foundations 3
2.1 Finite Fields . 3

2.1.X The Finite Field Fpm . 3
2.2 Elliptic Curves . 5

2.2.X Elliptic Curves over Fpm 5
2.3 Data Types and Conversions . 5

2.3.3 Elliptic-Curve-Point-to-Octet-String-Conversion 5
2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion 5
2.3.5 Field-Element-to-Octet-String Conversion 5
2.3.6 Octet-String-to-Field-Element Conversion 6
2.3.9 Field-Element-to-Integer Conversion 6

3 Cryptographic Components 6
3.1 Elliptic Curve Domain Parameters 6

3.1.X Elliptic Curves Domain Parameters over Fpm 6
3.1.3 Verifiably Random Curves and Base Point Generators . . . 9

3.2 Elliptic Curve Key Pairs . 11

A Glossary 12
A.1 Terms . 12
A.2 Acronyms . 12
A.3 Notation . 12

B ASN.1 12

∗ Possible Corrections or Comments on SEC 1 (Draft Version 1.9) 16

† Verifiable Random Curve Generation in Standards 17
†.1 FIPS . 17
†.2 SEC . 18
†.3 ANSI . 18
†.4 Other Comments . 19

1

CONTENTS CONTENTS

Update History

Version 0.6 The followings are updated:

• Base document version is replaced from SEC1 Version 1.8 to Version
1.9.

• Add ASN.1 representations.

• Correct editorial mistakes.

Version 0.5 First public release.

2

2 MATHEMATICAL FOUNDATIONS

1 Introduction

This document is intended to make the odd characteristic extension fields avail-
able for elliptic curve cryptography defined in SEC 1. The most of specification
in SEC 1 can be used for the odd characteristic extension fields as it is, but
some specification should slightly be modified for them. The following sections
describe the modifications for the odd characteristic field from SEC 1. Note that
the sections that can be used for the odd characteristic extension field as it is are
omitted in this document.

2 Mathematical Foundations

2.1 Finite Fields

SEC 1 only defines the finite field Fq, where q is a prime or a power of 2. Here, the
odd characteristic extension fields Fpm are defined, where p is odd prime greater
than 3 and m ≥ 2.

Mathematically speaking, odd characteristic means p ≥ 3, and p = 3 is very
special for elliptic curve, and p = 3 is not used in this document. p = 3 is
excluded in the definition of the odd characteristic extension fields.

2.1.X The Finite Field Fpm

The finite field Fpm is the characteristic p finite field containing pm elements.
This section describes the case that p is prime and m ≥ 2, and such a field is
called odd characteristic extension field. Although there is only one characteristic
p finite field Fpm for each power pm of p with m ≥ 2, there are many different
ways to represent the elements of Fpm .

Here the elements of Fpm should be represented using the polynomial basis,
that is, the set of polynomials of degree m − 1 or less with Fp-coefficients:

{am−1x
m−1 + am−2x

m−2 + · · · + a1x + a0 : ai ∈ Fp}

with addition and multiplication defined in terms of an irreducible monic poly-
nomial f(x) of degree m with Fp-coefficient, known as the reduction polynomial,
as follows:

• Addition: If a = am−1x
m−1 + · · ·+ a0, b = bm−1x

m−1 + · · ·+ b0 ∈ Fpm , then
a+ b = r in Fpm , where r = rm−1x

m−1 + · · ·+ r0 with ri ≡ ai + bi (mod p).

• Multiplication: If a = am−1x
m−1 + · · ·+ a0, b = bm−1x

m−1 + · · ·+ b0 ∈ Fpm ,
then ab = s in Fpm , where s = sm−1x

m−1+· · ·+s0 is the remainder when the
polynomial ab is divided by f(x) with all coefficients arithmetic performed
modulo p.

3

2 MATHEMATICAL FOUNDATIONS 2.1 Finite Fields

Addition and multiplication in Fpm can be calculated efficiently using standard
algorithms for ordinary integer and polynomial arithmetic. In this representa-
tion of Fpm , the additive identity or zero element is the polynomial 0, and the
multiplicative identity is the polynomial 1.

Again it is convenient to define subtraction and division of field elements.
To do so, the additive inverse (or negative) and multiplicative inverse of a field
element must be described:

• Additive inverse: If a ∈ Fpm , then the additive inverse (−a) of a in Fpm is
the unique solution to the equation a + x = 0 in Fpm .

• Multiplicative inverse: If a ∈ Fpm , a 6= 0, then the multiplicative inverse
a−1 of a in Fpm is the unique solution to the equation ax = 1 in Fpm .

Additive inverse and multiplicative inverses in Fpm can be calculated efficiently.
Multiplicative inverse can be calculated using the polynomial version of the ex-
tended Euclidean algorithm. Division and subtraction are defined in terms of
additive and multiplicative inverses: a − b in Fpm is a + (−b) in Fpm and a/b in
Fpm is a(b−1) in Fpm .

Here the odd characteristic extension fields Fpm used should have:

(p,m) ∈ {(261 − 1, 5), (261 − 1, 7), (261 − 1, 11)}

and addition and multiplication in Fpm should be performed using one of the
irreducible monic polynomials of degree m in Table 1. As before this restriction
is designed to facilitate interoperability while enabling implementers to deploy
efficient implementations capable of meeting common security requirements.

Field Reduction Polynomial(s)

F(261−1)5 f(x) = x5 − 3
F(261−1)7 f(x) = x7 − 3
F(261−1)11 f(x) = x11 − 3

Table 1: Representation of Fpm

The rule used to pick acceptable (p, m)’s was that Fpm becomes an optimal
extension field (OEF). p of an OEF should slightly be less than the power of 2,
and the power should also slightly be less than word size in bits. Moreover, (p,m)
was chosen such that an irreducible monic binomial with degree m on Fp exists.
c ∈ Fp in the irreducible monic binomial xm − c chosen that as small in non-
negative integer as possible. Composite m was avoided to align this specification
to address concerns expressed by some experts about the security of elliptic curves
defined over Fpm with m composite.

4

2 MATHEMATICAL FOUNDATIONS 2.2 Elliptic Curves

2.2 Elliptic Curves

2.2.X Elliptic Curves over Fpm

This section is the same as Section 2.2.1 “Elliptic Curves over Fp” in SEC 1,
except for the followings:

• All expressions “· · · ≡ · · · (mod p)” are replaced with “· · · = · · · in Fpm”.

• All prime field notations Fp are replaced with Fpm .

Note that the case of p = 3 is not considered, because Section 2.1.X does not
accept this parameter.

2.3 Data Types and Conversions

2.3.3 Elliptic-Curve-Point-to-Octet-String-Conversion

Add the following step in Step 2.2 in Actions:
2.2.3. If q = pm is a power of odd prime, set ỹP = 0 if y = 0, otherwise set
ỹP = yi (mod 2), where y = ym−1x

m−1 + · · · + y1 + y0, and i is the smallest
integer such that yi 6= 0.

2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion

Add the following step in Step 2.4 in Actions:
2.4.4. If q = pm is a power of odd prime, compute the field element α = x3

P +
axP + b in Fpm , and compute a square root β of α in Fpm . Output “invalid” and
stop if there are no square roots of α in Fpm . Otherwise set yP = 0 if β = 0,
otherwise set yP = β if βi ≡ ỹP (mod 2), and set yP = −β if βi 6≡ ỹP (mod 2),
where β = βm−1x

m−1 + · · · + β1x + β0, and i is the smallest integer such that
βi 6= 0.

2.3.5 Field-Element-to-Octet-String Conversion

Add the following step in Actions:
3. If q = pm is a power of odd prime, convert a to M as follows:

3.1. Convert a to x using the conversion routine specified in Section 2.3.9 (with
a as input).

3.2. Convert x to M using the conversion routine specified in Section 2.3.7 (with
a and mlen as inputs).

3.3. Output M .

5

3 CRYPTOGRAPHIC COMPONENTS

2.3.6 Octet-String-to-Field-Element Conversion

Add the following step in Actions:
3. If q = pm is a power of odd prime, then a needs to be a polynomial of degree
m − 1 or less with Fp-coefficient. Convert M to a as follows:

3.1. Convert M to an integer x using the conversion routine specified in Section
2.3.8.

3.2. Output “invalid” and stop if x does not lie in the interval [0, pm − 1].

3.3. View ai as an integer in the range [0, p − 1] and set:

x =
m−1∑
i=0

piai.

3.4. Set the field element a to be a = am−1x
m−1 + · · · + a1x + a0, and output a.

2.3.9 Field-Element-to-Integer Conversion

Add the following step in Actions:
3. If q = pm is a power of odd prime, then a must be a polynomial of degree m−1
or less with Fp-coefficient, — i.e. a = am−1x

m−1 +am−2x
m−2 + · · ·+a1x+a0. Set:

x =
m−1∑
i=0

piai

Output x.

3 Cryptographic Components

3.1 Elliptic Curve Domain Parameters

Following sections often consider only two types of elliptic curve domain param-
eters. Whenever “two types” are found, consider that the types should include
the type for odd characteristic extension field.

3.1.X Elliptic Curves Domain Parameters over Fpm

Elliptic curve domain parameters over Fpm are an octuple:

T = (p,m, f(x), a, b, G, n, h)

6

3 CRYPTOGRAPHIC COMPONENTS3.1 Elliptic Curve Domain Parameters

consisting of an integer p and m specifying the finite field Fpm , two elements
a, b ∈ Fpm specifying the elliptic curve E(Fpm) defined by the equation:

E : y2 = x3 + ax + b in Fpm ,

a base point G = (xG, yG) on E(Fpm), a prime n which is the order of G, and an
integer h which is the cofactor h = #E(Fpm)/n.

Elliptic curve domain parameters over Fpm precisely specify an elliptic curve
and base point. This is necessary to precisely define public-key cryptographic
schemes based on ECC.

If the elliptic curve domain parameters T are verifiably random, then they
should be accompanied by the seed value S from which they are derived. Section
3.1.X.1 describes how to generate elliptic curve domain parameters over Fpm ,
and Section 3.1.X.2 describes how to validate elliptic curve domain parameters
over Fpm .

3.1.X.1 Elliptic Curve Domain Parameters over Fpm Generation Prim-
itive

Elliptic curve domain parameters over Fpm should be generated as follows:

Input: The approximate security level in bits required from the elliptic curve
domain parameters — this must be an integer t ∈ {80, 112, 128, 192, 256}.
Optionally, a seed value S.

Output: Elliptic curve domain parameters over Fpm :

T = (p, m, f(x), a, b, G, n, h)

such that taking logarithms on the associated elliptic curve requires ap-
proximately 2t operations.

Actions: Generate elliptic curve domain parameters over Fpm as follows:

1. Select (p, m) ∈ {(261 −1, 5), (261 −1, 7), (261 −1, 11)} to determine the
finite field Fpm such that 22t < pm for a random curve or 22t < pm−1

for a Koblitz curve.

2. Select an irreducible monic polynomial f(x) of degree m from Table 1
in Section 2.1.X to determine the representation of Fpm .

3. Select elements a, b ∈ Fpm to determine the elliptic curve E(Fpm) de-
fined by the equation:

E : y2 = x3 + ax + b in Fpm ,

a base point G = (xG, yG) on E(Fpm), a prime n which is the order of
G, and an integer h which is the cofactor h = #E(Fpm)/n, subject to
the following constraints:

7

3 CRYPTOGRAPHIC COMPONENTS3.1 Elliptic Curve Domain Parameters

• 4a3 + 27b2 6= 0 in Fpm .

• #E(Fpm) 6= pm.

• pB 6≡ 1 (mod n) for any 1 ≤ B < 100m.

• h ≤ p2t/8.

• n − 1 and n + 1 should each have a large prime factor r, which is
in the sense that logn(r) > 19

20
.

If seed S is provided, then the coefficient pair (a, b), or the point G
should be derived from S, or both See Section 3.1.3.

4. Output T = (p, m, f(x), a, b, G, n, h).

This primitive allows any of the known curve selection methods to be used — for
example the methods based on complex multiplication and the methods based on
general point counting algorithms. However to foster interoperability it is strongly
recommended that implementers use one of the elliptic curve domain parameters
over Fpm specified in SEC X.2. See Appendix B for further discussion.

3.1.X.2 Validation of Elliptic Curve Domain Parameters over Fpm

This section is the same as Section 3.1.1.2 “Validation of Elliptic Curve Domain
Parameters over Fp” in SEC 1, except for the followings:

• All prime field notation Fp is replaced with Fpm .

• “Section 3.1.1.2.1” is replaced with “Section 3.1.X.2.1”.

• “Section 3.1.1.1” is replaced with “Section 3.1.X.1”.

3.1.X.2.1 Elliptic Curve Domain Parameters over Fpm Validation Prim-
itive

The elliptic curve domain parameters over Fpm validation primitive should be
used to check that elliptic curve domain parameters over Fpm are valid as follows:

Input: Elliptic curve domain parameters over Fpm :

T = (p, m, f(x), a, b, G, n, h)

along with an integer t ∈ {80, 112, 128, 192, 256} which is the approximate
security level in bits required from the elliptic curve domain parameters.

Output: An indication of whether the elliptic curve domain parameters are valid
or not — either “valid” or “invalid”.

Actions: Validate the elliptic curve domain parameters over Fpm as follows:

8

3 CRYPTOGRAPHIC COMPONENTS3.1 Elliptic Curve Domain Parameters

1. Check that (p,m) is an integer in the set {(261−1, 5), (261−1, 7), (261−
1, 11)} such that 22t < pm for a random curve or 22t < pm−1 for a
Koblitz curve.

2. Check that f(x) is an irreducible monic polynomial of degree m with
Fp-coefficient which is listed in Table 1 in Section 2.1.X.

3. Check that a, b, xG, and yG are in Fpm .

4. Check that 4a3 + 27b2 6= 0 in Fpm .

5. Check that y2
G = x3

G + axG + b in Fpm .

6. Check that n is prime.

7. Check that h ≤ p2t/8, and that h = b(
√

pm + 1)2/nc.
8. Check that nG = O.

9. Check that pB 6≡ 1 (mod n) for any 1 ≤ B < 100m, and that
nh 6= pm.

10. If any of the checks fail, output “invalid”, otherwise output “valid”.

Step 9 above excludes the known weak classes of curves which are susceptible
to either the Menezes-Okamoto-Vanstone attack, or the Frey-Rück attack, or
Semaev-Smart-Satoh-Araki attack. See Appendix B in SEC 1 for further discus-
sion.

If the elliptic curve domain parameters have generated verifiably at random as
described in Section 3.1.3, it may also be checked that a and b have been correctly
derived from the seed, and it may also checked that G has been correctly derived
from S.

3.1.3 Verifiably Random Curves and Base Point Generators

The subsections of this section include several unclear descriptions. The follow-
ing is the modification proposal. When modifying the procedures, the following
problems are considered:

• Hash is assumed as one defined in Section 3.5, that is, Hash inputs an octet
string and also outputs an octet string, not a bit string.

• Unlike other procedures, one of inputs, “seed”, is a bit string, not an octet
string.

3.1.3.1 Curve Selection

For generating Koblitz curve over Fpm , the input of field size q is chosen as p
instead of pm, otherwise choose q = pm.

Input: A “seed” octet string S of length g, field size q, hash function Hash of
output length t, and field element a ∈ Fq.

9

3 CRYPTOGRAPHIC COMPONENTS3.1 Elliptic Curve Domain Parameters

Output: A field element b ∈ Fq or “failure”.

Actions: Generate the element b as follows:

1. If a = 0, then output “failure” and stop.

2. Let u = dlog2 qe.
3. Let s = b(u − 1)/tc.
4. Let k = u − st if q is even, and let k = u − st − 1 if q is odd.

5. Convert S to an integer s0 using the conversion routine specified in
Section 2.3.8 (with S as input).

6. For j from 0 to s, do the following:

6.1 Let sj = s0 + j mod 28g.

6.2 Let Sj be the integer sj converted to an octet string of length g
octets using the conversion routine specified in Section 2.3.7 (with
Sj and g as inputs).

6.3 Let Hj = Hash(Sj).

6.4 Convert Hj to an integer ej using the conversion routine specified
in Section 2.3.8 (with Hj and t as inputs).

7. Let e = e02
ts + e12

t(s−1) + · · · + es mod 2k+st.

8. Convert e to an octet string x using the conversion routine specified
in Section 2.3.7 (with e and du/8e as inputs).

9. Convert x to a field element r ∈ Fq using the conversion routine spec-
ified in Section 2.3.6 (with the indication of the field Fq and x as
inputs).

10. If q is even, then do as follows:

10.1 If r = 0, then output “failure” and stop.

10.2 If r 6= 0, then output b = r ∈ Fq and stop.

11. If q is odd, then do as follows:

11.1 If r = 0, then output “failure” and stop.

11.2 If 4r + 27 = 0 in Fq, then output “failure” and stop.

11.3 If a3/r does not have a square root in Fq, then output “failure”
and stop.

11.4 Otherwise, choose one of ±
√

a3/r ∈ Fq as b and output b and
stop.

10

3 CRYPTOGRAPHIC COMPONENTS 3.2 Elliptic Curve Key Pairs

3.1.3.2 Point Selection

Input: A “seed” octet string S of length g, field size q, hash function Hash of
output length t, and elliptic curve parameters a and b, and elliptic curve
cofactor h.

Output: An elliptic curve point G.

Actions: Generate an elliptic curve point G as follows:

1. Let A = 4261736520706F696E7416, which is the octet string associ-
ated with the ASCII representation of the text string “Base point”.

2. Let B = 0116, an octet string of length 1.

3. Let an integer c = 1.

4. Convert integer c to an octet string C of length 1+blog256(c)c using the
conversion routine specified in Section 2.3.7 (with c and 1+blog256(c)c
as inputs).

5. Let H = Hash(A‖B‖C‖S).

6. Convert H to an integer e using the conversion routine specified in
Section 2.3.8 (with H as input).

7. Let s = e mod 2q.

8. Let u = s mod q and ỹR = bs/qc.
9. Convert integer u to an octet string x using the conversion routine

specified in Section 2.3.7 (with u and 1 + blog256 qc as inputs).

10. Convert octet string x to a field element xR ∈ Fq using the conversion
routine specified in Section 2.3.6 (with the indication of the field Fq

and x as inputs).

11. Recover a y-coordinate from the compressed point information (xR, ỹR),
as appropriate to the elliptic curve followed by Step 2.4 in Section 2.3.4.

12. If there is no valid yR, then increment c and go back to Step 4.

13. Let R = (xR, yR).

14. Compute G = hR.

15. Output G.

3.2 Elliptic Curve Key Pairs

Modification request: Please do not use the specific descriptions regarding Fp

or F2m such as “T = (p, a, b, G, n, h) or (m, f(x), a, b, G, n, h)” in the schemes
including ECDSA for the following sections.

11

B ASN.1

A Glossary

A.1 Terms

Add the following term(s):

odd characteristic extension field A finite field containing pm elements, where
p > 3 is an odd prime number and m ≥ 2 is an integer.

Modify the following term(s):

reduction polynomial The irreducible monic polynomial f(x) of degree m
with F2- or Fp-coefficient that is used to determine a representation of F2m

or Fpm .

A.2 Acronyms

Add the following acronym(s):

OEF optimal extension field

A.3 Notation

Modify the following notation(s):

Fq The finite field containing q elements. In this document attention is restricted
to the cases that q is an odd prime number p or a power of 2 (2m) or a
power of an odd prime p (pm).

B ASN.1

--###

-- finite field, group, and elliptic curve representations

Group ::= CHOICE {

groupOid OBJECT IDENTIFIER,

groupHashId OCTET STRING, -- defined in RFC2528

groupParameters GroupParameters

}

GroupParameters ::= CHOICE {

explicitFiniteFieldSubgroup

[0] ExplicitFiniteFieldSubgroupParameters,

ellipticCurveSubgroup

[1] EllipticCurveSubgroupParameters

}

12

B ASN.1

ExplicitFiniteFieldSubgroupParameters ::= SEQUENCE {

fieldID FieldID {{FieldTypes}},

generator FieldElement,

subgroupOrder INTEGER,

subgroupIndex INTEGER

}

FIELD-ID ::= TYPE-IDENTIFIER

FieldID { FIELD-ID:IOSet } ::= SEQUENCE {

fieldType FIELD-ID.&id({IOSet}),

parameters FIELD-ID.&Type({IOSet}{@fieldType}) OPTIONAL

}

FieldTypes FIELD-ID ::= {

{ Prime-p IDENTIFIED BY prime-field } |

{ Characteristic-two IDENTIFIED BY characteristic-two-field }|

{ Odd-characteristic IDENTIFIED BY id-ft-odd-characteristic },

... -- expect additional field types

}

-- prime fieds

Prime-p ::= INTEGER

-- characteristic two fields

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

-- when basis is gnBasis then the basis shall be an optimal

-- normal basis of Type T where T is determined as follows:

-- if an ONB of Type 2 exists for the given value of m then

-- T shall be 2, otherwise if an ONB of Type 1 exists for the

-- given value of m then T shall be 1, otherwise T shall be

-- the least value for which an ONB of Type T exists for the

-- given value of m

-- when basis is gnBasis then m shall not be divisible by 8

-- note: the above rule is from ANSI X9.62

-- note: for the given m and T the ONB is unique

Characteristic-two ::= SEQUENCE {

m INTEGER,-- extension degree

basis CHARACTERISTIC-TWO.&id({BasisTypes}),

parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})

}

BasisTypes CHARACTERISTIC-TWO ::= {

{ NULL IDENTIFIED BY gnBasis } |

{ Trinomial IDENTIFIED BY tpBasis } |

{ Pentanomial IDENTIFIED BY ppBasis } |

{ CharTwoPolynomial IDENTIFIED BY charTwoPolynomialBasis },

... -- expect additional basis types

}

13

B ASN.1

Trinomial ::= INTEGER

Pentanomial ::= SEQUENCE {

k1 INTEGER,

k2 INTEGER,

k3 INTEGER

}

-- characteric two general irreducible polynomial representation

-- the irreducible polymial

-- a(n)*x^n + a(n-1)*x^(n-1) + ... + a(1)*x + a(0)

-- is encoded in the bit string with a(n) in the first bit, the

-- following coefficients in the following bit positions and a(0)

-- in the last bit of the bit string (one could omit a(n) and a(0)

-- but it may be simpler and less error-prone to leave them in

-- the encoding)

-- the degree of the polynomial is to be inferred from the length

-- of the bit string

CharTwoPolynomial ::= BIT STRING

-- odd characteristic extension fields

ODD-CHARACTERISTIC ::= TYPE-IDENTIFIER

Odd-characteristic ::= SEQUENCE {

characteristic INTEGER(3..MAX),

degree INTEGER(2..MAX),

basis ODD-CHARACTERISTIC.&id({OddCharBasisTypes}),

parameters ODD-CHARACTERISTIC.&Type({OddCharBasisTypes}{@basis})

}

OddCharBasisTypes ODD-CHARACTERISTIC ::= {

{ OddCharPolynomial IDENTIFIED BY oddCharPolynomialBasis },

... -- expect additional basis types

}

-- the monic irreducible polynomial is encoded as follows

-- the leading coefficient is ignored

-- the remaining coefficients define an element of the finite field

-- which is encoded in an octet string using FE2OSP

OddCharPolynomial ::= FieldElement

EllipticCurveSubgroupParameters ::= SEQUENCE {

version INTEGER { ecpVer1(1) } (ecpVer1),

fieldID FieldID {{ FieldTypes }},

curve Curve,

generator ECPoint, -- Base point G

subgroupOrder INTEGER, -- Order mu of the base point

subgroupIndex INTEGER, -- The integer nu = #E(F)/mu

...

}

14

B ASN.1

Curve ::= SEQUENCE {

aCoeff FieldElement,

bCoeff FieldElement,

seed BIT STRING OPTIONAL

}

15

∗ POSSIBLE CORRECTIONS OR COMMENTS ON SEC 1 (DRAFT
VERSION 1.9)

∗ Possible Corrections or Comments on SEC 1

(Draft Version 1.9)

page 1, Section 1, 1st line: “sectiongives” should be “section gives”.

page 14, Section 2.3.8, 1st line: “range [1, 256]” should be “range [0, 255]”.
Note that Version 1.0 does not contain this problem.

page 14, Section 2.3.9, 3rd line: The formal procedure does not convert the
binary polynomial to an octet string.

page 14, Section 2.3.9, Step 2 in Actions: The degree of a may be less than
m − 1.

page 16, Section 3.1.1.1, last line in Step 2 in Actions: “§” is used instead
of “Section”.

page 18, Section 3.1.2.1, Step 8 in Actions: “n 6= p” should be replaced
with “nh 6= p”.

page 19, Section 3.1.2.1, last line in Step 3 in Actions: “§” is used instead
of “Section”.

page 20, Section 3.1.2.2, last line: The description for CA is omitted while
Section 3.1.1.2 writes.

page 21, Section 3.1.3: This section only generates an elliptic curve or a base
point. Sections 3.1.1.2.1 and 3.1.2.2.1 certainly describe the use of seed S.
However, this section does not express the generated curves (or base point)
is valid for the use of secure cryptosystem.

page 21, Section 3.1.3, 2nd line: A verification procedure such as Appendix
6.5 in FIPS186-2 (+ Change Notice) cannot be found. (See Appendix †.1
for the problem in FIPS186-2.)

page 21, Section 3.1.3, 2nd line: “ANS” may be replaced with “ANSI”.

page 21, Section 3.1.3, 2nd paragraph, 4th line: “based point” should be
replaced with “base point”.

page 21, Section 3.1.3.1: The following problems are identified:

• Section 3.5 seems to define Hash outputs octet string, but t seems a
number of bits.

• “is q is odd” in Step 3 should be replaced with “if q is odd”.

• Which conversion procedure is used is not written in Steps 4 and 7.

16

† VERIFIABLE RANDOM CURVE GENERATION IN STANDARDS

• Step 7 may output “invalid”.

• Step 9.1 does not confirm the case r = 0.

• Lack of period in Step 9.1.

• In Step 9.2, “in Fq” should be added for 4r + 27 = 0.

• How to choose one of
√

a3/r in Step 9.4?

page 22, Section 3.1.3.2: The following problems are identified:

• The output of the procedure includes “failure”. However, the proce-
dure outputs “failure” when c is almost larger than the input bound
of Hash. It is very hardly occurs.

• t is used for the output length of Hash and Step 7.

• If the output length of Hash is small, u is not uniform when q is odd.
Moreover, z is always 0 in Step 10.

• The compressed point information (x, z) in Step 10 is not defined be-
fore.

page 22-, Section 3.2-: The following sections only considers for the prime
field and the characteristic two field. It seems very easy to modify that
the descriptions for prime fields considers for both prime field odd charac-
teristic extension fields. Could you include this comments?

page 29-30, Section 3.5: The hash functions written in the section inputs and
outputs octet strings, but hash function Hash in Actions inputs and out-
puts bit strings.

page 72-73, Section B.2.1: Add the comments regarding the following prob-
lem. Section 3.1.3 describes the verifiable parameter generations. Some
parameters generated by the procedures described in the section are not
chosen uniformly random from acceptable range. This may not be a prob-
lem, but the thought why the procedures are okay should be described.

page 96-99, Section B.6: Many “ANS” are found. Actually, the expression
both ANS X9.62 and ANSI X9.62 seems acceptable, but the combination
seems strange.

† Verifiable Random Curve Generation in Stan-

dards

†.1 FIPS

c is generated by SHA-1, and one cannot control the value of c.

17

† VERIFIABLE RANDOM CURVE GENERATION IN STANDARDS†.2 SEC

• Step 9 of APPENDIX 6.4 (page 63) in FIPS 186-2 (+ Change Notice)
Step 9 of Section E.5 (page 114) in FIPS 186-3 (March 2006 Draft)

9. Choose integers a, b ∈ GF (p) such that

cb2 ≡ a3 (mod p)

(The simplest choice is a = c and b = c. However, one may want
to choose differently for performance reasons.)

• Step 7 of APPENDIX 6.5 (page 64) in FIPS 186-2 (+ Change Notice)
Step 7 of Section E.6 (pp.114–115) in FIPS 186-3 (March 2006 Draft)

7. Verify that b2c ≡ −27 (mod p).

The verification procedure seems to assume a = −3, but the generation procedure
accepts the case of a 6= −3.

†.2 SEC

r is derived with Hash, and one cannot control the value of r. a is one of the
input of the generation procedure, similar to the input of hash function. In SEC
1, Draft 1.9:

• Step 9 (page 21) in Section 3.1.3.1:

9.1 If a = 0, then output “failure” and stop

9.2 If 4r + 27 = 0, then output “failure” and stop.

9.3 If a3/r does not have a square root in Fq, then output “fail-
ure” and stop.

9.4 Otherwise output b =
√

a3/r ∈ Fq and stop.

• The verification procedure is undefined.

†.3 ANSI

r is derived with Hash, and one cannot control the value of r. a is arbitrary
chosen. In ANSI X.62-2005:

• Step l in Section A.3.3.1

1) Solve the equation b2r = a3 for b in Fq if a solution exists;
otherwise, stop and output “Failure” (see NOTE 2).

2) If 4a3 +27b2 = 0, then stop and output “Failure” (see NOTE
3).

18

† VERIFIABLE RANDOM CURVE GENERATION IN STANDARDS†.4 Other Comments

• Step d in Section A.3.3.2

If SEED is provided and the curve E does not match the curve
that would be generated using A.3.3.1, then stop and output
“Invalid”.

†.4 Other Comments

• The random number generated from hash function is not uniform in the
valid range. Uniformly random value seems better.

• To decide a and b in the equation y2 = x3 + ax + b has some freedom. The
algebraic closure of the curve has the same group structure, however, the
order of the elliptic curve over the finite field may vary. It seems better
that a and b does not have freedom to choose by the generation.

19

