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Abstract. We present a new 128-bit block cipher
called Camellia. Camellia supports 128-bit block size
and 128-, 192-, and 256-bit keys, i.e. the same inter-
face specifications as the Advanced Encryption Stan-
dard (AES). Efficiency on both software and hardware
platforms is a remarkable characteristic of Camellia in
addition to its high level of security. It is confirmed that
Camellia provides strong security against differential
and linear cryptanalysis. Compared to the AES final-
ists, i.e. MARS, RC6, Rijndael, Serpent, and Twofish,
Camellia offers at least comparable encryption speed
in software and hardware. An optimized implementa-
tion of Camellia in assembly language can encrypt on
a Pentium III (800MHz) at the rate of more than 276
Mbits per second, which is much faster than the speed
of an optimized DES implementation. In addition, a
distinguishing feature is its small hardware design. The
hardware design, which includes both encryption and
decryption, occupies approximately 11K gates, which
is the smallest among all existing 128-bit block ciphers
as far as we know.

1 Introduction

This paper presents a 128-bit block cipher called
Camellia, which was jointly developed by NTT and
Mitsubishi Electric Corporation. Camellia supports
128-bit block size and 128-, 192-, and 256-bit key
lengths, and so offers the same interface specifications
as the Advanced Encryption Standard (AES). The de-
sign goals of Camellia are as follows.

High level of security. The recent advances in
cryptanalytic techniques are remarkable. A quantita-
tive evaluation of security against powerful cryptana-
lytic techniques such as differential cryptanalysis [4] and
linear cryptanalysis [21] is considered to be essential
in designing any new block cipher. We evaluated the
security of Camellia by utilizing state-of-art cryptana-
lytic techniques. We have confirmed that Camellia has
no differential and linear characteristics that hold with
probability more than 2−128. Moreover, Camellia was
designed to offer security against other advanced crypt-
analytic attacks including higher order differential at-
tacks [15, 12], interpolation attacks [12, 2], related-key
attacks [5, 18], truncated differential attacks [15, 26],
boomerang attacks [29], and slide attacks [6, 7].

Efficiency on multiple platforms. As crypto-
graphic systems are needed in various applications, en-
cryption algorithms that can be implemented efficiently
on a wide range of platforms are desirable, however, few
128-bit block ciphers are suitable for both software and
hardware implementation. Camellia was designed to of-
fer excellent efficiency in hardware and software imple-
mentations, including gate count for hardware design,
memory requirements in smart card implementations,
as well as performance on multiple platforms.
Camellia consists of only 8-by-8-bit substitution ta-
bles (s-boxes) and logical operations that can be ef-
ficiently implemented on a wide variety of platforms.
Therefore, it can be implemented efficiently in software,
including the 8-bit processors used in low-end smart
cards, 32-bit processors widely used in PCs, and 64-bit
processors. Camellia doesn’t use 32-bit integer addi-
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tions and multiplications, which are extensively used
in some software-oriented 128-bit block ciphers. Such
operations perform well on platforms providing a high
degree of support, e.g., Pentium II/III or Athlon, but
not as well on others. These operations can cause a
longer critical path and larger hardware implementa-
tion requirements.

The s-boxes of Camellia are designed to minimize
hardware size. The four s-boxes are affine equivalent to
the inversion function in the finite field GF(28). More-
over, we reduced the inversion function in GF(28) to
a few GF(24) arithmetic operations. It enabled us to
implement the s-boxes by fewer gate counts.

The key schedule is simple and shares part of its pro-
cedure with encryption. It supports on-the-key sub-
key generation and subkeys are computable in any or-
der. The memory requirement for generating subkeys is
quite small; an efficient implementation requires about
32-byte RAM for 128-bit keys and about 64-byte RAM
for 192- and 256-bit keys.

Future developments. NTT and Mitsubishi Elec-
tric Corporation will propose Camellia in response to
the call for contributions from ISO/IEC JTC 1/SC 27,
aiming at its being adopted as an international stan-
dard. We will submit Camellia to NESSIE (New Euro-
pean Schemes for Signature, Integrity, and Encryption)
project as a strong cryptographic primitive.

Outline of the paper. This paper is organized as
follows: Section 2 describes the notations and high-level
structure of Camellia. Section 3 defines each compo-
nents of the cipher. Section 4 describes the rationale
behind Camellia’s design. In Section 5 we evaluate
Camellia’s strength against known attacks. Section 6
contains the performance of Camellia. We conclude in
Section 7.

2 Structure of Camellia

Camellia uses an 18-round Feistel structure for 128-
bit keys, and a 24-round Feistel structure for 192- and
256-bit keys, with additional input/output whitenings
and logical functions called the FL-function and FL−1-
function inserted every 6 rounds. Figures 1 shows an
overview of encryption using 128-bit keys. The key
schedule generates 64-bit subkeys kwt (t = 1, 2, 3, 4)
for input/output whitenings, ku (u = 1, 2, . . . , r) for
round functions and klv(v = 1, 2, . . . , r/3 − 2) for FL-
and FL−1-functions from the secret key K.
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Figure 1: Encryption procedure of Camellia for 128-bit
keys

2.1 Notations

XL the left-half data of X .
XR the right-half data of X .
⊕ bitwise exclusive-OR operation.
|| concatenation of two operands.
>>>n rotation to the right by n bits.
<<<n rotation to the left by n bits.
∩ bitwise AND operation.
∪ bitwise OR operation.
0x hexadecimal representation.

2.2 Encryption for 128-bit keys

First a 128-bit plaintext M is XORed with kw1||kw2
and separated into two 64-bit data L0 and R0, i.e.,M⊕
(kw1||kw2) = L0||R0. Then, the following operations
are performed from r = 1 to 18, except for r = 6 and
12;

Lr = Rr−1 ⊕ F (Lr−1, kr),
Rr = Lr−1.

For r = 6 and 12, the following is carried out;

L′r = Rr−1 ⊕ F (Lr−1, kr),
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R′r = Lr−1,
Lr = FL(L′r, klr/3−1),

Rr = FL−1(R′r, klr/3).

Lastly, R18 and L18 are concatenated and XORed
with kw3||kw4. The resultant value is the 128-bit ci-
phertext, i.e., C = (R18||L18)⊕ (kw3||kw4).

2.3 Encryption for 192- and 256-bit
keys

Similarly to the encryption for 128-bit keys, first a 128-
bit plaintextM is XORed with kw1||kw2 and separated
into two 64-bit data L0 and R0, i.e., M ⊕ (kw1||kw2) =
L0||R0. Then, the following operations are performed
from r = 1 to 24, except for r = 6, 12, and 18;

Lr = Rr−1 ⊕ F (Lr−1, kr),
Rr = Lr−1.

For r = 6, 12, and 18, the following are performed;

L′r = Rr−1 ⊕ F (Lr−1, kr),
R′r = Lr−1,
Lr = FL(L′r, kl2r/6−1),

Rr = FL−1(R′r, kl2r/6).

Lastly, R24 and L24 are concatenated and XORed
with kw3||kw4. The resultant value is the 128-bit ci-
phertext, i.e., C = (R24||L24)⊕ (kw3||kw4).

2.4 Decryption

The decryption procedure of Camellia can be done in
the same way as the encryption procedure by reversing
the order of the subkeys, which is one of merits of Feis-
tel networks. In Camellia, FL/FL−1-function layers
are inserted every 6 rounds, but this property is still
preserved.

2.5 Key Schedule

Figure 2 shows the key schedule of Camellia. Two 128-
bit variables KL and KR are defined as follows. For
128-bit keys, the 128-bit key K is used as KL and KR
is 0. For 192-bit keys, the left 128-bit of the key K is
used as KL, and concatenation of the right 64-bit of K
and the complement of the right 64-bit of K is used as
KR. For 256-bit keys, the left 128-bit of the key K is
used as KL and the right 128-bit of K is used as KR.
Two 128-bit variablesKA andKB are generated from
KL andKR as shown in Figure 2. Note that KB is used
only if the length of the secret key is 192 or 256 bits.
The 64-bit constants Σi (i = 1, 2, . . . , 6) are used as

Table 1: The key schedule constants

Σ1 0xA09E667F3BCC908B

Σ2 0xB67AE8584CAA73B2

Σ3 0xC6EF372FE94F82BE

Σ4 0x54FF53A5F1D36F1C

Σ5 0x10E527FADE682D1D

Σ6 0xB05688C2B3E6C1FD

“keys” in the Feistel network. They are defined as con-
tinuous values from the second hexadecimal place to the
seventeenth hexadecimal place of the hexadecimal rep-
resentation of the square root of the i-th prime. These
constant values are shown in Table 1.

The 64-bit subkeys kwt, ku, and klv are generated
fromKL, KR, KA, andKB. The subkeys are generated
by rotating KL, KR, KA, and KB and taking the left-
or right-half of them. Details are shown in Tables 2
and 3.
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Figure 2: Key Schedule
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Table 2: Subkeys for 128-bit keys
subkey value

Prewhitening kw1 (KL<<<0)L
kw2 (KL<<<0)R

F (Round1) k1 (KA<<<0)L
F (Round2) k2 (KA<<<0)R
F (Round3) k3 (KL<<<15)L
F (Round4) k4 (KL<<<15)R
F (Round5) k5 (KA<<<15)L
F (Round6) k6 (KA<<<15)R
FL kl1 (KA<<<30)L
FL−1 kl2 (KA<<<30)R
F (Round7) k7 (KL<<<45)L
F (Round8) k8 (KL<<<45)R
F (Round9) k9 (KA<<<45)L
F (Round10) k10 (KL<<<60)R
F (Round11) k11 (KA<<<60)L
F (Round12) k12 (KA<<<60)R
FL kl3 (KL<<<77)L
FL−1 kl4 (KL<<<77)R
F (Round13) k13 (KL<<<94)L
F (Round14) k14 (KL<<<94)R
F (Round15) k15 (KA<<<94)L
F (Round16) k16 (KA<<<94)R
F (Round17) k17 (KL<<<111)L
F (Round18) k18 (KL<<<111)R
Postwhitening kw3 (KA<<<111)L

kw4 (KA<<<111)R

3 Components of Camellia

3.1 F -function

The F -function is shown in Figure 3. The F -
function uses the SPN (Substitution-Permutation Net-
work) structure. The S-function is the non-linear layer
and the P -function is the linear layer.

3.2 S-function, s-boxes

The S-function consists of eight s-boxes and four differ-
ent s-boxes, s1, s2, s3, and s4 are used. All of them are
affine equivalent to the inversion function in GF(28).
The data of s2, s3, and s4 can be generated from the
s1 table. The tables are shown in [1].

s1 : GF(2)
8 → GF(2)8,

x 7→ h(g(f(0xc5⊕ x))) ⊕ 0x6e
s2 : GF(2)

8 → GF(2)8, x 7→ s1(x)<<<1
s3 : GF(2)

8 → GF(2)8, x 7→ s1(x)>>>1
s4 : GF(2)

8 → GF(2)8, x 7→ s1(x<<<1)

Table 3: Subkeys for 192/256-bit keys
subkey value

Prewhitening kw1 (KL<<<0)L
kw2 (KL<<<0)R

F (Round1) k1 (KB<<<0)L
F (Round2) k2 (KB<<<0)R
F (Round3) k3 (KR<<<15)L
F (Round4) k4 (KR<<<15)R
F (Round5) k5 (KA<<<15)L
F (Round6) k6 (KA<<<15)R
FL kl1 (KR<<<30)L
FL−1 kl2 (KR<<<30)R
F (Round7) k7 (KB<<<30)L
F (Round8) k8 (KB<<<30)R
F (Round9) k9 (KL<<<45)L
F (Round10) k10 (KL<<<45)R
F (Round11) k11 (KA<<<45)L
F (Round12) k12 (KA<<<45)R
FL kl3 (KL<<<60)L
FL−1 kl4 (KL<<<60)R
F (Round13) k13 (KR<<<60)L
F (Round14) k14 (KR<<<60)R
F (Round15) k15 (KB<<<60)L
F (Round16) k16 (KB<<<60)R
F (Round17) k17 (KL<<<77)L
F (Round18) k18 (KL<<<77)R
FL kl5 (KA<<<77)L
FL−1 kl6 (KA<<<77)R
F (Round19) k19 (KR<<<94)L
F (Round20) k20 (KR<<<94)R
F (Round21) k21 (KA<<<94)L
F (Round22) k22 (KA<<<94)R
F (Round23) k23 (KL<<<111)L
F (Round24) k24 (KL<<<111)R
Postwhitening kw3 (KB<<<111)L

kw4 (KB<<<111)R

where functions f and h are affine functions and func-
tion g is the inversion function in GF(28) as given be-
low.

f : GF(2)8 → GF(2)8, (a1, a2, . . . , a8) 7→ (b1, b2, . . . , b8),

where

b1 = a6 ⊕ a2 b5 = a7 ⊕ a4
b2 = a7 ⊕ a1 b6 = a5 ⊕ a2
b3 = a8 ⊕ a5 ⊕ a3 b7 = a8 ⊕ a1
b4 = a8 ⊕ a3 b8 = a6 ⊕ a4.

h : GF(2)8 → GF(2)8, (a1, a2, . . . , a8) 7→ (b1, b2, . . . , b8),
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Figure 3: F -function

where

b1 = a5 ⊕ a6 ⊕ a2 b5 = a7 ⊕ a3
b2 = a6 ⊕ a2 b6 = a8 ⊕ a1
b3 = a7 ⊕ a4 b7 = a5 ⊕ a1
b4 = a8 ⊕ a2 b8 = a6 ⊕ a3.

g : GF(2)8 → GF(2)8, (a1, a2, . . . , a8) 7→ (b1, b2, . . . , b8),
where

(b8 + b7α+ b6α
2 + b5α

3) + (b4 + b3α+ b2α
2 + b1α

3)β

= ((a8+a7α+a6α
2+a5α

3)+(a4+a3α+a2α
2+a1α

3)β)−1.

This inversion is performed in GF(28) assuming 10 = 0,
where β is an element in GF(28) that satisfies β8+β6+
β5 + β3 + 1 = 0, and α = β238 = β6 + β5 + β3 + β2 is
an element in GF(24) that satisfies α4 + α+ 1 = 0.

3.3 P -function

The P -function is defined as follows:

P : (GF(2)8)8 → (GF(2)8)8,
(z1, z2, . . . , z8) 7→ (z′1, z′2, . . . , z′8),

where

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7.

3.4 FL-function

The FL-function is shown in Figure 4, and is defined
as follows.

FL : GF(2)64 ×GF(2)64 → GF(2)64,

(XL||XR, klL||klR) 7→ YL||YR,

where

YR = ((XL ∩ klL)<<<1)⊕XR
YL = (YR ∪ klR)⊕XL.

3.5 FL−1-function

The FL−1-function is shown in Figure 5. The following
equation holds.

FL−1(FL(x, k), k) = x.

1

X(64)

XL(32)

Y(64)

kl i L(32)

XR(32)

YL(32) YR(32)

kl i R(32)

Figure 4: FL-function

1

X (64)

Y(64)

kl i R(32)

kl i L(32)

YL(32) YR(32)

XL(32) XR(32)

Figure 5: FL−1-function

4 Design Rationale

4.1 F -function

The design strategy of the F -function of Camellia fol-
lows that of the F -function of E2 [28]. The main dif-
ference between E2 and Camellia is the adoption of the
1-round (conservative) SPN (Substitution-Permutation
Network), not the 2-round SPN, i.e. S-P-S. When the
1-round SPN is used as the round function in a Feistel
cipher, the theoretical evaluation of the upper bound
of differential and linear characteristic probability be-
comes more complicated, but the speed under the same
level of “real” security is expected to be improved. See
Section 6 for detailed discussions on security.
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4.2 P -function

The design rationale of the P -function is similar to that
of the P -function of E2. That is, for computational ef-
ficiency, it should be represented using only bytewise
exclusive-ORs and for security against differential and
linear cryptanalysis, its branch number should be opti-
mal [19]. From among the linear transformations that
satisfy these conditions, we chose one considering highly
efficient implementation on 32-processors [3] and high-
end smart cards, as well as 8-bit processors.

4.3 s-boxes

As the s-boxes we adopted functions affine equivalent to
the inversion function in GF(28) for enhanced security
and small hardware design.

It is well known that the smallest of the maximum dif-
ferential probability of functions in GF(28) was proven
to be 2−6, and the smallest of the maximum linear prob-
ability of functions in GF(28) is conjectured to be 2−6.
There is a function affine equivalent to the inversion
function in GF(28) that achieves the best known of the
maximum differential and linear probabilities, 2−6. We
choose this kind of functions as s-boxes. Moreover, the
high degree of the Boolean polynomial of every output
bit of the s-boxes makes it difficult to attack Camel-
lia by higher order differential attacks. The two affine
functions that are performed at the input and output
of the inversion function in GF(28) complicates the ex-
pressions of the s-boxes in GF(28), which is expected
to make interpolation attacks ineffective. Making the
four s-boxes different slightly improves security against
truncated differential cryptanalysis [26].

For small hardware design, the elements in GF(28)
can be represented as polynomials with coefficients in
the subfield GF(24). In other words, we can implement
the s-boxes by using a few operations in the subfield
GF(24) [25]. Two affine functions at the input and
output of the inversion function in GF(28) also play
a role in complicating the expressions of the s-boxes in
GF(24).

4.4 FL- and FL−1-functions

FL- and FL−1-functions are “inserted” between every
6 rounds of a Feistel network to provide non-regularity
across rounds. One of the goals for such a design is
to thwart future unknown attacks. It is one of merits
of regular Feistel networks that encryption and decryp-
tion procedures are the same except for the order of
the subkeys. In Camellia, FL/FL−1-function layers
are inserted every 6 rounds, but this property is still
preserved.

The design criteria of FL- and FL−1-functions are
similar to those of the FL-function of MISTY [23]. The
difference between MISTY and Camellia is the addition
of 1-bit rotation. This is expected to make bytewise
cryptanalysis harder, but it has no negative impact on
hardware size or speed. The design criteria are that
these functions must be linear for any fixed key and
that their forms depend on key values. Since these func-
tions are linear as long as the key is fixed, they do not
make the average differential and linear probabilities of
the cipher higher. Moreover, these functions are fast in
both software and hardware since they are constructed
by logical operations such as AND, OR, XOR, and ro-
tations.

4.5 Key Schedule

The design criteria of the key schedule are as follows.

1. It should be simple and share part of its procedure
with encryption/decryption.

2. Subkey generation for 128-, 192- and 256-bit keys
can be performed by using the same key schedule
(circuit). Moreover, the key schedule for 128-bit
keys can be performed by using a part of this cir-
cuit.

3. Key setup time should be shorter than encryption
time. In cases where large amounts of data are pro-
cessed with a single secret key, the setup time for
key scheduling may be unimportant. On the other
hand, in applications in which the key is changed
frequently, key agility is a factor. One basic com-
ponent of key agility is key setup time.

4. It should support on-the-fly subkey generation.

5. On-the-fly subkey generation should be com-
putable in the same way in both encryption and
decryption. Some ciphers have separate key sched-
ules for encryption and decryption. In other ci-
phers, e.g., Rijndael or Serpent, subkeys are com-
putable in the forward direction only and require
unwinding for decryption.

6. There should be no equivalent keys.

7. There should be no related-key attacks or slide at-
tacks.

Criteria 1 and 2 mainly address small hardware re-
quirements, Criteria 3, 4, and 5 are advantageous in
terms of practical applications, and Criteria 6 and 7
are for security.
The memory requirement for generating subkeys is
quite small. An efficient implementation of Camellia
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for 128-bit keys requires 16 bytes (=128 bits) for the
original secret key, KL, and 16 bytes (=128 bits) for
the intermediate key, KA. Thus the required memory
is 32 bytes. Similarly, an efficient implementation of
Camellia for 192- and 256-bit keys needs only 64 bytes.

5 Security

5.1 Differential and Linear Cryptanaly-
sis

The most well-known and powerful approaches to at-
tacking many block ciphers are differential cryptanal-
ysis, proposed by Biham and Shamir [4], and linear
cryptanalysis, introduced by Matsui [21]. There are
several methods of evaluating security against these at-
tacks, where there is a kind of “duality” relation be-
tween them [22, 9]: in other words, the security against
both attacks can be evaluated in similar ways.
It is known that the upper bounds of differen-
tial/linear characteristic probabilities can, for several
block ciphers, be estimated using the minimum num-
bers of differential/linear active s-boxes in some consec-
utive rounds. Kanda [13] shows the minimum numbers
of differential/linear active s-boxes for Feistel ciphers
with conservative SPN (S-P) round function. Hereafter,
we assume that linear transformation P is bijective.

Definition 1 The branch number B of linear transfor-
mation P is defined by

B = min
x 6=0
(wH(x) + wH(P (x))),

where wH(x) denotes the bytewise Hamming weight of
x.

Definition 2 A differential active s-box is defined as
an s-box given a non-zero input difference. A linear ac-
tive s-box is defined as an s-box given a non-zero output
mask value.

Theorem 1 The minimum number of differential/ lin-
ear active s-boxes in any eight consecutive rounds is
equal or larger than 2B + 1.
Definition 3 Let ps and qs be the maximum differen-
tial/linear probabilities of all s-boxes {s1, s2, . . .}.
ps = max

i
max

∆x 6=0,∆y
Pr
x
[si(x) ⊕ si(x ⊕∆x) = ∆y]

qs = max
i
max
Γy 6=0,Γx

(2 Pr
x
[x · Γx = si(x) · Γy]− 1)2

Theorem 2 Let D and L be the minimum numbers of
total differential/linear active s-boxes. Then, the max-
imum differential/linear characteristic probabilities are
bounded by pDs and qLs , respectively.

With the above-mentioned techniques, we prove that
Camellia offers immunity to these attacks by showing
the upper bounds of maximum differential/linear char-
acteristic probabilities, since Camellia is a Feistel cipher
whose round function uses the S-P round function.

In the case of Camellia, the maximum differen-
tial/linear probabilities of the s-boxes are ps = qs =
2−6. The branch number of the linear transformation
(P -function) is 5, i.e. B = 5. Letting p, q be the
maximum differential/linear characteristic probabilities
of Camellia reduced to 16-round without FL- and
FL−1-functions, respectively, we have p ≤ p2(2B+1)s =

(2−6)22 = 2−132 and q ≤ q2(2B+1)s = (2−6)22 = 2−132

from Theorems 1 and 2. Both probabilities are below
the security threshold of 128-bit block ciphers: 2−128.
It follows that there is no effective differential charac-
teristic or linear characteristic for Camellia reduced to
more than 15 rounds without FL- and FL−1-functions.
Since FL- and FL−1-functions are linear for any fixed
key, they do not make the average differential/linear
probabilities of the cipher higher. Hence, it is proven
that Camellia offers enough security against differential
and linear attacks.

Note that the result above are based on Theorems 1
and 2. Both theorems deal with general cases of Feis-
tel ciphers with SPN round function, so we expect
that Camellia is actually more secure than shown by
the result above. As supporting evidence, we counted
the number of active s-boxes of Camellia with reduced
rounds. The counting algorithm is similar to that de-
scribed in [24] except following three items.

• Prepare the table for the number of active s-boxes
instead of transition probability table.

• Count the number of active s-boxes instead of com-
puting transition probability.

• FL- and FL−1-functions set all elements to the
minimum number of active s-boxes in the table.
This means that the algorithm gives consideration
to existence of weak subkeys inserted to FL- and
FL−1-functions, since there may be some possi-
bility of connecting every later differential/linear
characteristic with the previous one with the high-
est probability, which is equivalent to the minimum
number of active s-boxes.

As a result, we confirmed that 12-round Camellia
with FL- and FL-functions has no differential/linear
characteristic with probability higher than 2−128 (see
Tables 4 and 5).
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Table 4: Upper bounds of differential characteristic probability of Camellia
# of rounds 1 2 3 4 5 6 7 8 9 10 11 12
Estimation based 2−12 2−30 2−42 2−66 2−96

on Th. 1 and 2 (2) (5) (7) (11) (16)
Camellia 1 2−6 2−12 2−42 2−54 2−66 2−72 2−72 2−78 2−108 2−120 2−132

(0) (1) (2) (7) (9) (11) (12) (12) (13) (18) (20) (22)
without FL/FL−1- 1 2−6 2−12 2−36 2−54 2−66 2−78 2−90 2−108 2−126 2−132

functions (0) (1) (2) (6) (9) (11) (13) (15) (18) (21) (22)
Note: The numbers in brackets are the number of active s-boxes.

Table 5: Upper bounds of linear characteristic probability of Camellia
# of rounds 1 2 3 4 5 6 7 8 9 10 11 12
Estimation based 2−12 2−30 2−42 2−66 2−96

on Th. 1 and 2 (2) (5) (7) (11) (16)
Camellia 1 2−6 2−12 2−36 2−54 2−66 2−72 2−72 2−78 2−102 2−120 2−132

(0) (1) (2) (6) (9) (11) (12) (12) (13) (17) (20) (22)
without FL/FL−1- 1 2−6 2−12 2−36 2−54 2−66 2−78 2−84 2−108 2−120 2−132

functions (0) (1) (2) (6) (9) (11) (13) (14) (18) (20) (22)
Note: The numbers in brackets are the number of active s-boxes.

5.2 Truncated Differential Cryptanaly-
sis

The attacks using truncated differentials were intro-
duced by Knudsen [15]. He defined them as differen-
tials where only a part of the difference can be pre-
dicted. The notion of truncated differentials introduced
by him is wide, but with a byte-oriented cipher it is
natural to study bytewise differentials as truncated dif-
ferentials [26].
The maximum differential probability is considered
to provide the strict evaluation of security against dif-
ferential cryptanalysis, but computing its value is im-
possible in general, since a differential is a set of all
differential characteristics with the same input differ-
ence and the same output difference for a Markov ci-
pher [20]. On the other hand, a truncated differential
can be regarded as a subset of the differential character-
istics which are exploitable in cryptanalysis. For some
ciphers, e.g., byte-oriented ciphers, the probability of
truncated differential can be computed easily and cor-
rectly, and it gives a more strict evaluation than the
maximum differential characteristic probability.
A truncated differential cryptanalysis of reduced-
round variants of E2 was presented by Matsui and
Tokita at FSE’99 [26]. Their analysis was based on
the “byte characteristic,” where the values to the dif-
ference in a byte are distinguished between non-zero
and zero. They found a 7-round byte characteristic,
which leads to a possible attack on an 8-round variant
of E2 without IT -Function (the initial transformation)
and FT -Function (the final transformation). The best
attack of E2 shown in [27] breaks an 8-round variant

of E2 with either IT -Function or FT -Function using
294 chosen plaintexts. In [27] we also show the attack
which distinguishes a 7-round variant of E2 with IT -
and FT -Functions from a random permutation using
291 chosen plaintexts.
Camellia is a byte-oriented cipher similar to E2, and
it is important to evaluate its security against truncated
differential cryptanalysis. We searched for truncated
differentials using an algorithm similar to the one de-
scribed in [26, 27]. The main difference of the round
function between E2 and Camellia is the adoption of
the 1-round SPN not the 2-round SPN, i.e. S-P-S. In
the search for truncated differentials of E2, we used
about 2−8 as the probability of difference cancellation
in byte at the XOR of Feistel network. However, the
round function of Camellia doesn’t have the second s-
boxes-layer, and the difference cancellation sometimes
occurs with probability 1. As a result, Camellia with
more than 10 rounds is indistinguishable from a random
permutation, in both cases with/without FL-/FL−1-
function layers.

5.3 Truncated Linear Cryptanalysis

We introduce a new cryptanalysis called truncated lin-
ear cryptanalysis.
Due to the duality between differential and linear
cryptanalysis, we can evaluate security against trun-
cated linear cryptanalysis by using a similar algorithm
to that above. To put it concretely, we can perform the
search by replacing the matrix of P -function with the
transposed matrix. As a result, Camellia with more
than 10 rounds without FL-/FL−1-function layers is
indistinguishable from a random permutation.
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5.4 Cryptanalysis with Impossible Dif-
ferential

The impossible differential means the differential which
holds with probability 0, or the differential which never
exists. Using such an impossible differential, it is pos-
sible to narrow down the candidates of the subkey. It
is known that there is at least one 5-round impossi-
ble differential in any Feistel network with a bijective
round function. Since Camellia has the Feistel network
(with FL- and FL−1-functions inserted between every
6 rounds) and the round function is bijective, Camel-
lia has 5-round impossible differentials. We have not
found impossible differentials with more than 6 rounds.
Moreover, we expect FL- and FL−1-functions make at-
tacking Camellia using impossible differentials difficult,
since the functions change differential paths depending
on key values. In consequent, Camellia with full rounds
will not be broken by cryptanalysis using impossible dif-
ferentials.

5.5 Boomerang Attack

Boomerang attack [29] requires 2 differentials. Let
the probability of the differentials be p∆ and p∇. An
boomerang attack that is superior than exhaustive key
search requires

p∆p∇ ≥ 2−64. (1)

Using Table 4, there is no combination that satisfies
Inequality (1) for Camellia without FL- and FL−1-
functions. The best boomerang probability for Camel-
lia without FL- and FL−1-functions reduced to 8-round
is bounded by 2−66 that is obtained by p∆ = 2−12 (3
rounds) and p∇ = 2−54 (5 rounds). Since attackable
rounds for Camellia without FL- and FL−1-functions
is bounded by much shorter than the specification of
Camellia, 18 or 24, Camellia seems secure against a
boomerang attack.

5.6 Higher Order Differential Attack

Higher order differential attack is generally applicable
to ciphers that can be represented as Boolean polyno-
mials of low degree. All intermediate bits in the encryp-
tion process can be represented as Boolean polynomials,
i.e. polynomials GF(2)[x1, x2, . . . , xn] in the bits of the
plaintext: {x1, x2, . . . , xn}. In the higher order differ-
ential attack described in [12, Theorem 1], if the inter-
mediate bits are represented by Boolean polynomials of
degree at least d, the (d+1)-th order differential of the
Boolean polynomial becomes 0.
For the degrees of Boolean polynomials of the s-boxes
of Camellia, the functions affine equivalent to the inver-
sion function in GF(28) are adopted as the s-boxes. It

Table 6: Smallest number of unknown coefficients for
128-, 192-, and 256-bit keys

whitening×1 + round×r (r < 4) 1
whitening×1 + round×4 255
More rounds 256

is known that the degree of the Boolean polynomial of
every output bit of the inversion function in GF(28)
is 7, but the degree for the s-boxes of Camellia is not
trivial, since affine functions are added at the input and
output. We confirmed that the degree of the Boolean
polynomial of every output bit of the s-boxes is 7 by
finding Boolean polynomial for every output bit of the
s-boxes. In Camellia, it is expected that the degree of
an intermediate bit in the encryption process increases
as the data pass through many s-boxes. For exam-
ple, the degree becomes 73 > 128 after passing through
three s-boxes. Therefore, we expect that higher or-
der differential attacks fail against Camellia with full
rounds.

5.7 Interpolation Attack and Linear
Sum Attack

The interpolation attack proposed in [12] is typically
applicable to attacking ciphers that use simple algebraic
functions.
The principle of interpolation attack is that, roughly
speaking, if the ciphertext is represented as a polyno-
mial or rational expression of the plaintext whose num-
ber of unknown coefficients is N , the polynomial or
rational expression can be constructed using N pairs
of plaintexts and ciphertexts. Once the attacker con-
structs the polynomial or rational expression, he can
encrypt any plaintext into the corresponding cipher-
text or decrypt any ciphertext into the corresponding
plaintext for the key without knowing the key. Since
N determines the complexity and the number of pairs
required for the attack, it is important to make N as
large as possible. If N is so large that it is impractical
for the attackers to gather N plaintext-ciphertext pairs,
the cipher is secure against interpolation attack.
Linear sum attack [2] is a generalization of the inter-
polation attack [12]. A practical algorithm that eval-
uates the security against linear sum attack was pro-
posed in [2]. We searched for linear relations between
any plaintext byte and any ciphertext byte over GF(28)
using the algorithm. Table 6 summarizes the results.
Table 6 shows that Camellia is secure against linear
sum attack including interpolation attack. It also im-
plies that Camellia is secure against Square attack [10]
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followed by [2, Theorem 3].

5.8 No Equivalent Keys

Since the set of subkeys generated by the key schedule
contain the original secret key, there is no equivalent set
of subkeys generated from distinct secret keys. There-
fore, we expect that there are no distinct secret keys
both of which encrypt each of many plaintexts into the
same ciphertext.

5.9 Slide Attack

In [6, 7] the slide attacks were introduced, based on
earlier work in [5, 14]. In particular it was shown that
iterated ciphers with identical round functions, that is,
equal structures and equal subkeys in the round func-
tions, are susceptible to slide attacks.
In Camellia, FL- and FL−1-functions are “inserted”

between every 6 rounds of a Feistel network to provide
non-regularity across rounds. Moreover, from the view-
point of the key schedule, slide attacks seems to be very
unlikely to succeed (See Section 5.10).

5.10 Related-key Attack

We are convinced that the key schedule of Camellia
makes related-key attacks [5, 18] very difficult. In these
attacks, an attacker must be able to get encryptions
using several related keys. If the relation between, say,
two keys, is known then if the corresponding relations
between the subkeys can be predetermined, it might
become possible to predict how the keys would encrypt
a pair of different plaintexts. However, since the sub-
keys depend on KA and KB, which are the results of
encryption of a secret key, and if an attacker wants to
change the secret key, he can’t get KA and KB desired,
and vice versa, these subkey relations will be very hard
to control and predict.

5.11 Implementation Attacks

It is well known that a poor implementation can leak
information by timing attacks [16] or power analysis
attacks [17]. Using the classification proposed in [11],
Camellia is in the group of “favorable” algorithms, since
it uses only logical operations and table-lookups and
fixed rotations.
On the other hand, Chari et al. [8] claims that all AES
candidates are susceptible to power analysis attacks. As
these two papers contradict with each other, how to re-
sist against power analysis attacks is not known, since
study on power analysis attacks has just begun. We
think that Camellia should be protected by the hard-
ware techniques and should not be evaluated by the

security directly derived from the specification, consid-
ering the current art. We hope that the study on power
analysis attack will be progressed in the near future.

6 Performance

6.1 Software Implementations

Table 7 summarizes the current software implementa-
tions of Camellia. The table shows that Camellia can
be efficiently implemented on low-end smart cards, and
32-bit and 64-bit processors. We use the abbreviations
M (mega) for 106 and m (milli) for 10−3 in the table.

6.2 Hardware Performance

We measured the hardware performance of 128bit-key
Camellia on ASIC (Application Specific Integrated Cir-
cuit) and FPGA (Field Programmable Gate Array).
Table 8 shows the environment of our hardware design
and evaluation. We evaluated hardware performance of
the three types: Type 1, Type 2 and Type 3 logic. The
hardware design policy of each type is as follows.

Type 1 Fast implementation from the viewpoint of
Enc(Dec) speed

Type 2 Small implementation from the viewpoint of
total logic size

Type 3 Small implementation (special case for
FPGA)

Tables 9 through 12 summarize the hardware perfor-
mance of 128bit-key Camellia on ASIC (Application
Specific Integrated Circuit) and FPGA (Field Pro-
grammable Gate Array).

7 Conclusion

We have presented Camellia, the rationale behind
its design, its suitability for both software and
hardware implementation, and the results of our
cryptanalyses. For further information, please re-
fer to the specification of Camellia [1] or full pa-
per, which are available on the Camellia home page:
http://info.isl.ntt.co.jp/camellia/.
The performances shown in this paper leave room for
further optimizations. The latest performance results
will be posted on the Camellia home page.
We have analyzed Camellia and found no important
weakness. The cipher has a conservative design and any
practical attacks against Camellia would require a ma-
jor breakthrough in the area of cryptanalysis. We think
that Camellia is a very strong cipher, which matches the
security of the existing best block ciphers.
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Table 7: Camellia software performance

Processor Language Key len. Timinga Dynamicb Codec Tabled

(bits) Setupe (f ) Enc.g (h) Setupe Enc.g Setupe Enc.g

P IIIi Assembly 128 160 (4.4M) 371 (242M) 28 36 1,046 2,150 8,224
192 222 (3.2M) 494 (181M) 28 36 1,469 3,323 8,240
256 226 (3.1M) 494 (181M) 28 36 1,485 3,323 8,240

P IIj ANSI Ck 128 263 (1.1M) 577 (67M) 44 64 1,600 3,733 4,128
Alphal Assembly 128 118 (5.7M) 339 (252M) 48 48 1,132 3,076 16,528

192 176 (3.7M) 445 (192M) 48 48 1,668 4,000 16,528
256 176 (3.7M) 445 (192M) 48 48 1,676 4,000 16,528
128 158 (4.2M) 326 (262M) 48 48 1,600 2,928 16,512

8051m Assembly 128 0 (0) 10217 (10m) 0 32 0 702 288

aNumber of cycles needed for setup or encryption.
bDynamically used memory in bytes including stack area, excluding text and key area, which is usually located in RAM.
cCode size in bytes, which is sometimes located in ROM.
dTable size in bytes, which is sometimes located in ROM.
eKey schedule may be included.
fSeconds for 8051, and keys/s for other processors.
gNumbers of this column is the same as decryption, since Camellia is symmetric between encryption and decryption.
hSeconds for 8051, and b/s for other processors.
iIBM PC/AT compatible PC, Intel Pentium III (700MHz), 256KB on-die L2 cache, FreeBSD 4.0R, 128MB main memory.
jIBM PC/AT compatible PC, Intel Pentium II (300MHz), 512KB L2 cache, MS-Windows 95, 160MB main memory.
kMicrosoft Visual C++ 6 with the optimization options /G6 /Zp16 /ML /Ox /Ob2.
lCOMPAQ Professional Workstation XP1000, Alpha 21264 (667MHz), Compaq Tru64 UNIX 4.0F, 2GB main memory.
mIntel 8051 (12MHz; 1 cycle = 12 oscillator periods) simulator on Unix.

Table 8: Hardware evaluation environment (ASIC, FPGA)
Language (ASIC, FPGA) Verilog-HDL
Simulator (ASIC, FPGA) Verilog-XL
Design library (ASIC) Mitsubishi Electric 0.35µ CMOS ASIC library

(FPGA) Xilinx XC4000XL series
Login synthesis (ASIC) Design Compiler version 1998.08

(FPGA) Synplify version 5.3.1 and ALLIANCE version 2.1i

Table 9: Hardware performance (Type 1: Fast implementation [ASIC(0.35µ CMOS)])

Algorithm Area [Gate] Key setup Critical- Throughput
name Enc.&Dec.a Key expan.b Total logicc time [ns] path [ns]d [Mb/s]

DES 42,204 12,201 54,405 — 55.11 1161.31
Triple-DES 124,888 23,207 128,147 — 157.09 407.40

MARS 690,654 2,245,096 2,935,754 1740.99 567.49 225.55
RC6 741,641 901,382 1,643,037 2112.26 627.57 203.96
Rijndael 518,508 93,708 612,834 57.39 65.64 1950.03
Serpent 298,533 205,096 503,770 114.07 137.40 931.58
Twofish 200,165 231,682 431,857 16.38 324.80 394.08

Camellia 216,911 55,907 272,819 24.36 109.35 1170.55

aincluding output registers
bincluding subkey registers
cincluding buffers for fan-out adjustment
dCritical path of data encryption (or decryption)
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Table 10: Hardware performance (Type 2: Small implementation [ASIC(0.35µ CMOS)])

Algorithm Area [Gate] Key setup Critical- Throughput
name Enc.&Dec.a Key sched.b Total logic c time [ns] path [ns]d [Mb/s]

Camellia 6,367 4,979 11,350 110.2 27.67 220.28

aincluding output registers and data selector
bincluding subkey registers and a part of key expansion logic
cincluding buffers for fan-out adjustment
dCritical path of data encryption (or decryption)

Table 11: Hardware performance (Type 2: Small implementation [FPGA(XC4000XL series)])

Algorithm Area [CLBs] Critical- Throughput
name Total path [ns]a [Mb/s]

Camellia 1,296 78.815 77.34

Table 12: Hardware performance (Type 3: Small implementation [FPGA(XC4000XL series)])

Algorithm Area [CLBs] Critical- Throughput
name Total path [ns]a [Mb/s]

Camellia 874 49.957 122.01

aCritical path of data encryption (or decryption)
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