

A 128-bit Block Cipher Suitable for Multiple Platforms

International Standard Encryption Algorithm from Japan "Camellia"

NTT Information Sharing Platform Laboratories

Camellia website http://info.isl.ntt.co.jp/crypt/eng/camellia/ E-mail: camellia@lab.ntt.co.jp

Copyright NTT 2010 All rights reserved

Why needs Camellia?

Camellia is the only international standard cipher that is an alternative to the US standard cipher AES

- All information systems depending only on a single cipher (i.e. AES) seem to be unstable and risky
 - Alternative choice should be prepared because of the risk hedging
- Easy use as well as AES
 - Same Interface
 - Royalty-free license
 - Already adopted to various standardizations
 - Already loaded with various open source software

Features of Camellia

Camellia -

- 128-bit block cipher (allowing key sizes of 128, 192, and 256 bits), jointly developed in 2000 by NTT & Mitsubishi
 Win-win collaboration on cryptography in Japan
- World's highest security and efficiency technically comparable to AES
 - Many evaluations in the cryptographic community have published
- Adopted as international standard specification and recommended specification for the coming encryption algorithms
 - AES, Camellia, and SEED are only ciphers selected as the future ISO/IEC standard ciphers
 - Already adopted in IETF (TLS, IPsec, S/MIME, OpenPGP, XML) and RSA PKCS#11, etc.

Features of Camellia (Cont.)

- Camellia essential patents can be used at no charge by any Camellia user without concluding such royalty-free licensing agreement http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html
- NTT publishes NTT's open source codes of Camellia free of charge through multiple open source software licenses (GPL, LGPL, BSD, MPL, and OpenSSL) http://info.isl.ntt.co.jp/crypt/eng/camellia/source.html
- NTT contributes to major open source communities
 - Some major open source communities, e.g., Mozilla, OpenSSL, Linux, FreeBSD and Kerberos, have already supported Camellia into their open source software
- NTT joined in Kerberos Consortium as an executive advisory board member

Supported Open Source Software

Major OSS communities loaded Camellia to their tools/kernels as the first Japanese cipher

Open S	ource & Information by NTT	Toolkit	i. OpenSSL toolkit 0.9.8c (or later)			
i. C-lan OpenS	guage code (GPL, LGPL, BSD, SL, MPL)		Notes: the option "enable-camellia" is needed when openssl-0.9.8x is built.			
ii. Java	code (GPL, BSD)		ii. NSS (Network Security Services)			
iii. Ruby iv. Guid	Camellia package ance & Instructions (in Japanese)		iii. Crypto++ library 5.4 (or later)			
	i. FreeBSD 6.4 (or later)/7.0 (or later)		iv. The Legion of the Bouncy Castle 1.30 (or later)			
OS Kernel	ii. Linux kernel 2.6.21 (or later) iii. Fedora Core 7 (or later)		v. GNU Transport Layer Security Library 2.20 (or later)			
			i. Camellia for Open Souce Softwares			
Applica	tion ii. ipsec-tools 0.7 (or later) iii. GnuPG 2.0 (or later) iV. Kerberos KRB5 1.9 (or later)	Third party codes	ii. Camellia for Python iii. Perl Camellia encryption module iv. openCrypto.NET			
			v. Pascal source by Wolfgang Ehrhardt			

28-bit Block Cipher Suitable for Multiple Platforms

SSL/TLS by Camellia

Gentoo Linux 2008.0 (or later), FreeBSD 7.0 (or later), FreeBSD ports 2007/6/12 (or later)

amellia

128-bit Block Cipher Suitable for Multiple Platforms

Handout of Camellia Ver7.0

Standardization of Symmetric Ciphers

Camellia is internationally recognized as representative of Japanese ciphers

Notes: "X" mark means "selected"

				ISO/IEC standard	RSA	IE	IETF standard ciphers				Government-related standard ciphers / recommended ciphers				
			Nationality	ciphers [ISO/IEC18033]	PKCS#11	SSL/TLS	IPsec	S/MIME	XML	US standard (FIPS/SP)	European Union recommended (NESSIE)	Japan recommended (CRYPTREC)	Korean standard	Canadian standard	
128-1	bit	Camellia	Japan	X	X	X [RFC4132]	X [RFC4312]	X [RFC3657]	X [RFC4051]	-	X	X	ł		
bloc	k ers	AES	USA	Х	X	X	X	X	X	X	X	X	ł	X	
	Η	SEED	Korea	X		X	Χ	Χ					Χ		
rans	iti	Triple DES	USA	X	X	X	X	X	X	X (Recommended)		X (Conditional)		X	
		CAST-128	Canada	Х	Х		X	X		-			I	X	
64-b	oit	MISTY1	Japan	Х							X	X			
bloc ciphe	ek ers	Blowfish	USA	-	Х		1	-		-	-		I		
	Γ	IDEA	Swiss		Х	X	Х	Х							
		RC2	USA		Х	X		X					-		
		RC5	USA		Х		X	X					-		
Stro	m	RC4	USA		X	X			X			X (Conditional)			
ciphe	ers	MUGI	Japan	X							-	X	-		
		SNOW	Sweden	Х											

Users & Products equipped with Camellia

Welcome to use Carnellia into any products II

Users

Japanese government systems, Financial services, Online Game (eg. Capcom), SNS services (eg. mixi), Network services, Manufacturing systems, Universities, etc.

Supported Venders

More than 60 companies adopt Camellia into their products

NTT Software	CipherCraft/Mail, CipherCraft/VPN, CipherCraft/File, etc
NTT Electronics	Camellia LSI, IP Super-Compact MPEG-2 Codec, etc
NTT-AT	Smart Leak Protect, File Lock II, etc
Mitsubishi Electric	Cryptopia, MistyGuard(R) <cryptofile(r) plus="">, etc</cryptofile(r)>
Renesas Technology	SH7781 MPU and MCU/SuperH RISC engine Family
AuthenTec (prev. SafeNet)	QuickSec Toolkit
THALES (prev. nCipher)	netHSM, nShield series, miniHSM
IAIK	IAIK-JCE, iSaSiLk, CMS-S/MIME, IAIK-XSECT
Bloombase	Spitfire Ethernet Encryptor, Spitfire StoreSafe, Spitfire Messaging, etc.

8

Security

Camellia achieves world's highest security level against state-of-the-art attacks and future unknown attacks

Published design rationale and self-evaluations

Camellia is practically secure against known strong attacks, e.g. differential and linear cryptanalysis

No vulnerabilities against state-of-the-art attacks

NO attacks are found against Camellia with any size of keys by the world's top-class researchers

[FYI] In 2009, AES-192/256 can be theoretically broken using related-key attack proposed by Alex Biryukov, et al.

World's top-class resistant security (security margin)

against unknown attacks in the future

(2009.9 at the present time)

Breakable rounds	7	8	9	10	11	12	13	14	15	Original
128-bit keys	ISA: 2 ^{58.6} VSA: 2 ^{90.6}	ISA: 2 ⁹⁸ ICA: 2 ^{74.6}	ISA: 2 ¹²²	Unknown attacks	Unknown attacks	Unknown attacks	Unknown attacks	Unknown attacks	Unknown attacks	Unknown attacks up to 18 rounds
256-bit keys	VSA: 2 ^{146.6}	ISA: 2 ⁸² VSA: 2 ^{194.6} ICA: 2 ^{66.6}	ISA: 214 Bes	st known	HDC: 2 ²⁵⁶	Unknown attacks	Unknown attacks	Unknown attacks	Unknown attacks	Unknown attacks up to 24 rounds

Performance and Flexibility

Camellia is extremely flexible and highly efficient according to circumstances

- Camellia possesses high-speed software that is platform independent such as PCs or smart cards
 - For PCs: Performance is achieved by using many registers, precomputed large tables and powerful instruction sets
 - For smart cards: Containment of memory usage is achieved using small tables and on-the-fly subkey generation

World's smallest hardware implementation with world top-class efficiency

- Substitution tables are implemented using an inversion function over GF(2⁸)
- Encryption and decryption circuits can be shared since these procedures are identical except for the order of subkey insertion

Performance and Flexibility (Cont.)

- Performance of Camellia is comparable to that of AES on any platform
 - No disadvantage in terms of efficiency

Cipher Suitable for Multiple Pl

11

Win-Win Collaboration on Crypto in Japan

128-bit Block Cipher Suitable for Multiple Platforms

What is "Camellia" – Origin of the Name

- Camellia (Tsubaki in Japanese)
 - Japan is the place of origin and the scientific name is Camellia japonica. In the language of flowers it means Good fortune and loveliness, gratitude.

Handout of Camellia Ver7.0

Our minds:

Although this encryption technology originates from Japan, after leaving Japan we want it to grow in various forms – as well as Camellia flowers

13

For More Detail ...

Please see the Camellia website !! http://info.isl.ntt.co.jp/crypt/eng/camellia/

28-bit Block Cipher Suitable for Multiple Platforms

15

Camellia Specifications

- Interface: Compatible with AES
 - Block length: 128 bits
 - Key length: 128, 192, and 256 bits
- Main structure: Similar to DES-like ciphers, not AES
 - 18-round Feistel structure for 128-bit key
 - 24-round Feistel structure for 192- and 256-bit keys
 - FL/FL⁻¹ function layers: Inserted every 6 rounds

Components

- Round function (F-function): Byte-oriented SPN structure
- FL/FL⁻¹ function layers: Combination of AND, OR, Rotation, and XOR
- Whitening: XOR

Subkey generation

- Intermediate keys are generated from secret key using 2-round Feistel structure
- Subkeys are created from secret key and intermediate keys using Rotation & Choice technique

Software Performance for PCs

Available to software-based encryption for high-quality videos

Brosseer	Longuage	Throughput	(both encryption and	Notos		
FIOCESSO	Language	128-bit key 192-bit key 256-bit key		notes		
Core2 Duo	ANSI C	505 cycles (801Mbps@3.16GHz)	655 cycles (618Mbps@3.16GHz)	655 cycles (618Mbps@3.16GHz)	Open source code published on	
E8400	Java	698 cycles (580Mbps@3.16GHz)	869 cycles 869 cycles (466Mbps@3.16GHz) (466Mbps@3.16GHz)		(Fedora)	
AMD Phenom 9850	ANSIC	470 cycles (683Mbps@2.5GHz)	610 cycles (526Mbps@2.5GHz)	603 cycles (532Mbps@2.5GHz)	Open source code published on Camellia website (FreeBSD)	
	Assembly	361 cycles (1.1 Gbps@3.2 GHz)	N/A	N/A	Papers (WinXP, Hyper-threading off)	
	C .	900 cycles (455 Mbps@3.2 GHz)	1168 cycles (351 Mbps@3.2 GHz)	1165 cycles (352 Mbps@3.2 GHz)	Old version of open source code published on Camellia website (WinXP, Hyper-threading off)	
Pentium 4		1008 cycles (216 Mbps@1.7 GHz)	1376 cycles (158 Mbps@1.7 GHz)	1376 cycles (158 Mbps@1.7 GHz)	NESSIE Performance Reports (Linux)	
	Java	1552 cycles (264 Mbps@3.2 GHz)	N/A	N/A	Old version of open source code published on Camellia website (WinXP, Hyper-threading off)	
Athlane 4 2500	Accombly	175 cycles (1.6 Gbps@2.2 GHz)	N/A	N/A	Two block parallel encryption (WinXP, Hyper-threading on)	
AUNION04 3500+	Аззенныў	243 cycles (1.2 Gbps@2.2 GHz)	N/A	N/A	Bitslice encryption (WinXP, Hyper-threading on)	
Pentium III	Assembly	326 cycles (255 Mbps@650 MHz)	N/A	N/A	CRYPTREC Report 2002 (Win98 SE)	

Handout of Camellia Ver7.0

e 11a

Cipher Suitable for Multiple Platforms

Copyright NTT 2010 All rights reserved

Tradeoff Between Security and Efficiency

Good balance of security and performance

28-bit Block Cipher Suitable for Multiple Platforms

Camellia gives greater importance to security than performance

Copyright NTT 2010 All rights reserved

Software Performance for Smart Cards

World's highest performance even under containment of memory usage

Few additional costs are needed even if decryption is required

	Memor	y usage	Speed per block (128-bit message)	Sp	eed ratio (Tr	iple DES = 1)	Re	Reference:		
Processor	RAM [bytes]	ROM [bytes]	Encryption / decryption [cycles]	Subkey generation [cycles]	4		······································	[3] [4]	2nd NESSIE	Workshop	
	63	1,698	28,382 (5.68 msec)	5,146 (1.03 msec)							
Z80	60	1,268	(enc. w subkey gen.) 3 (dec. w subkey gen.) 3	5,951 (7.19 msec) 7,553 (7.51 msec)							
8051	32	990	10,217 (10	.22 msec)							
H8/3113	Unknown	Unknown	4,100 (1.64 msec)	2,380 (0.95 msec)	2	_		-			
AE45X	60	Unknown	(enc. w subkey gen.) (dec. w subkey gen.)	8,136 (1.11 msec) 8,658 (1.18 msec)	ĺ						
	248	1,279	17,920 (2.64 msec)	6,144 (0.91 msec)							
SLE66 CLX320P	58	1,311	(enc. w subkey gen.) 2 (dec. w subkey gen.) 2	24,064 (3.55 msec) 24,576 (3.62 msec)	0						
M32Rx/D	44	8,684	1,236 (12.36 msec)	642 (6.42 msec)]	Camellia enc [3]	Camellia dec [3]	AES enc [3]	AES dec [3]	Triple DES enc [4]	

19

Handout of Camellia Ver7.0

Hardware Performance

Designed world's smallest circuit for 128-bit block ciphers (smaller than 10 Kgates) with world top-class efficiency

Туре	Design library	Throughput	Area size	Efficiency
		1,881.3 Mbps	44.3 KG	42.47
		1,050.9 Mbps	11.9 KG	88.52
	MELCO 0.18 μm	177.7 Mbps	8.1 KG	21.87
		71.5 Mbps	6.4 KG	11.23
	Commercial-based product	71 Mbps	6.4 KG	11.09
ASIC		2,154.9 Mbps	29.8 KG	72.31
	IBM 0.13 μm	1,907.6 Mbps	20.8 KG	91.76
		325.8 Mbps	6.5 KG	50.12
		567.3 Mbps	9.1 KG	62.34
	ΙΒΙνί Ο. 18 μπ	204.6 Mbps	6.3 KG	32.66
	Vilipy VortoyE	401.9 Mbps	9,426 slices	42.64
		227.4 Mbps	1,780 slices	127.76
EDCA	(Pipeline implementation)	6,750 Mbps	9,692 slices	
FFGA	Xiliny Vertex 3200E	369.0 Mbps	8,957 slices	42.14
		223.7 Mbps	1,678 slices	133.31
	(Pipeline implementation)	25,440 Mbps	19,482 slices	

Suitable for Multiple Platforms

Sketch of Procedure for 128-bit Key

A 128-bit Block Cipher Suitable for Multiple Platforms

Copyright NTT 2010 All rights reserved

Sketch of Procedure for 192-&256-bit Keys

A 128-bit Block Cipher Suitable for Multiple Platforms

Sketch of Intermediate Key Generation

Constants C_i:

the continuous values from the second hexadecimal place to the seventeenth hexadecimal place of the hexadecimal representation of the square root of 2, 3, 5, and 7, respectively

28-bit Block Cipher Suitable for Multiple Platforms

Sketch of Intermediate Key Generation (Cont.)

24

Handout of Camellia Ver7.0

28-bit Block Cipher Suitable for Multiple Platforms

Sketch of Round Function (F-function)

amellia

A 128-bit Block Cipher Suitable for Multiple Platforms

Useful Implementation for 32-bit CPU

Using an equivalent round function with large S-boxes
 This technique is very effective on CPUs equipped with 4-KB cache

amellia

Block Cipher Suitable for Multiple Platforms

Useful Implementation for Embedded CPU

- Equivalent round function based on 32-bit operations without changing S-boxes
 - This technique is effective on smart cards and embedded CPUs with memory constraints

amellia

Suitable for Multiple Platforms

Useful Implementation for Reducing Memory

Reducing capacity of S-boxes

This technique is effective on smart cards, embedded CPUs, and small hardware design with ROM constraints

 S_1 is affine equivalent to an inversion function over $GF(2^8)$

Reducing memory usage of subkey generation

This technique is effective on smart cards, embedded CPUs, and small hardware design with RAM constraints

- On-the-fly subkey generation technique can be used with secret key and intermediate keys
- If only 128-bit secret keys are acceptable, only K_L and K_A are required

All rights reserved

28

amelia

Security Evaluation Overview

Best known attacks can break the reduced-versions of Camellia in only with 9-rounds (128-bit key) or 11-rounds (256-bit key), while original versions require 18-rounds and 24-rounds, resp. (2009.9 at the present time)

Breakab	le rounds	5	6	7	8	9	10	11	12	13	14	15
128-bit	Modified-	ISA: 2 ^{10.6}	ISA: 2 ¹⁸	ISA: 2 ⁵⁸					Unknown	Unknown	Unknown	Unknown
ĸeys	versions	ICA: 2 ^{5.8}	VSA: 2 ^{18.6}	VSA: 2 ^{33.5}	VSA: 2 ^{74.6}	VSA: 290			attacks	attacks	attacks	attacks
	(except		ICA: 2 ^{13.7}	ICA: 254.7	ICA: 2 ^{94.9}	ICA: 2 ^{119.4}						
								IDC: 2 ¹²⁶				
	layers)		HDC: 2 ¹⁸	HDC: 2 ⁵⁷	HDC: 2 ¹²⁰							
				TDC: 192	TDC: 2 ^{55.6}							
	Reduced			ISA: 2 ^{58.6}	ISA: 2 ⁹⁸	ISA: 2 ¹²²	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
	-versions			VSA: 2 ^{90.6}			attacks	attacks	attacks	attacks	attacks	attacks
					ICA: 2 ^{74.6}							
256-bit	Modified-	-	-	ISA: 2 ⁵⁰								Unknown
keys	versions			VSA: 2 ^{25.6}	VSA: 2 ^{66.6}	VSA: 2 ¹²²	VSA: 2 ¹⁸⁶	VSA: 2 ²⁵⁰	(VSA: 2 ^{250.8})			attacks
	(except			ICA: 246.7	ICA: 2 ^{78.9}	ICA: 2 ^{143.4}	ICA: 2207.4					
	FL/FL ⁻¹										IDC: 2232.5	
	layers)					HDC: 2 ¹⁸⁸	HDC: 2 ²⁵²					
	Reduced				ISA: 2 ⁸²	ISA: 2 ¹⁴⁶	ISA: 2 ²¹⁰		Unknown	Unknown	Unknown	Unknown
	-versions			VSA: 2 ^{146.6}	VSA: 2 ^{194.6}				attacks	attacks	attacks	attacks
					ICA: 266.6							
		\checkmark						HDC: 2256				

References:

Duo Lei, Li Chao, and Keqin Feng, "New Observation on Camellia," SAC 2005, LNCS 3897

t Block Cipher Suitable for Multiple Platforms

Guan Jie, and Zhang Zhongya, "Improved Collision Attack on Reduced Round Camellia," CANS 2006, LNCS 4301

Lei Duo, Chao Li, and Keqin Feng, "Square Like Attack on Camellia," ICICS 2007, LNCS 4861

Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman, "Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1," CT-RSA 2008, LNCS 4964

ISA: Improved Square Attack / VSA: Variant Square Attack

ICA: Improved Collision attack

IDC: Impossible Differential Cryptanalysis HDC: Higher Order Differential Cryptanalysis

TDC: Truncated Differential Cryptanalysis

