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Changelog (Round 1 → Round 2)

We mainly change our submissions in the following points:

• Comprehensive algorithm specification and refined security proof:
In the first round, details on auxiliary functions such as seed expansion
functions Expandpk and Expandsk were not specified. In this version, the
specifications have been clarified to enhance the completeness of the algo-
rithm specification. Since some auxiliary functions use a pseudorandom
generator and rejection sampling, the security proof of QR-UOV has been
refined to incorporate the use of these functions.

• Implementations: The NIST’s status report on the first round addi-
tional signatures [NIS24] mentioned that the implementation of QR-UOV
can be further optimized. In response to this comment, we improve our
implementation from the first round version. Notably, our new implemen-
tations can significantly reduce the timing data from the original imple-
mentation.

• Security: The status report to the first round candidates expresses their
concerns about the security of the quotient ring (QR) structure of QR-
UOV [NIS24]. However, our proposed parameter sets from the first round
remain secure to this day, demonstrating the reliability of QR-UOV’s pa-
rameter selection. The security of QR-UOV is based on the hardness of
UOV and QR-MQ problems. The UOV problem is a well-known problem,
to which the security of other UOV variants is also reduced. We here
assume the UOV problem without the QR structure used in QR-UOV.
The QR-MQ problem is an original assumption used in QR-UOV, and its
hardness must be the primary concern raised in the status report; how-
ever, we sufficiently analyzed its security in the first round submission,
and its security has not been weakened since the first round. Also, we add
comments on some recently proposed attacks on UOV variants in the sec-
ond round submission. Especially, we analyze the effect of the technique
used in the attack on SNOVA [IA24] on QR-UOV.

• Parameters: In the first round submission, we propose four parameters
for each security level. In this submission, we select one recommended
parameter set for each level based on its performance as follows:

I: (q, v,m, ℓ) = (127, 156, 54, 3),

III: (q, v,m, ℓ) = (127, 228, 78, 3),

V: (q, v,m, ℓ) = (127, 306, 105, 3).
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1 Introduction

1.1 History

Currently used public key cryptosystems such as RSA and ECC can be broken in
polynomial time using a quantum computer executing Shor’s algorithm [Sho99].
Thus, there has been growing interest in post-quantum cryptography (PQC),
which is secure against quantum computing attacks. Indeed, the U.S. National
Institute for Standards and Technology (NIST) has initiated a PQC standard-
ization project [NIS].

Multivariate public key cryptography (MPKC), based on the difficulty of
solving a system of multivariate quadratic polynomial equations over a finite
field (the multivariate quadratic (MQ) problem), is regarded as a strong can-
didate for PQC. TheMQ problem is NP-complete [GJ90] and is thus likely to
be secure in the post-quantum era.

The unbalanced oil and vinegar signature scheme (UOV) [KPG99], a mul-
tivariate signature scheme proposed by Kipnis et al. at EUROCRYPT 1999,
has withstood various types of attacks for approximately 20 years. UOV is a
well-established signature scheme owing to its short signature and short execu-
tion time. Indeed, a multilayer UOV variant Rainbow [DS05] was selected as
a third-round finalist in the NIST PQC project [NIS20]. However, an attack
on Rainbow proposed by Beullens at 2022 [Beu22] broke the security of third
round parameters and makes the Rainbow scheme inefficient if it takes a coun-
termeasure against the attack. Thus, the research following the approach to
return to the original UOV has been accelerating. One drawback of UOV is
that the public key is much larger than those of other PQC candidates such as
lattice-based signature schemes. Indeed, Rainbow, whose public key size is close
to that of the plain UOV, had the largest public key among the third-round-
finalist signature schemes, and NIST’s report [NIS20] stated that Rainbow is
unsuitable as a general-purpose signature scheme owing to this problem.

One of the directions to solve the problem of UOV’s large public key size
is to utilize an algebraic structure. The CRYSTALS-DILITHIUM [DKL+18] is
a selected algorithm in the NIST PQC project, and it is standardized as ML-
DSA [FIP24]. It is based on the hardness of the module learning with errors
((M)LWE) problem [BGV14]. Non-structural LWE [Reg09] is a well-studied
hard problem in cryptography, and the MLWE problem is its generalization
using a module comprising vectors over a ring. This suggests that improving
non-structural cryptographic schemes by investigating further algebraic theory
is a natural direction to realize compact schemes. We present QR-UOV following
this direction to develop a UOV variant with a small public key.

1.2 QR-UOV at ASIACRYPT 2021

At ASIACRYPT 2021, Furue et al. [FIKT21] proposed a new variant of UOV,
which is called quotient ring UOV (QR-UOV). The public key of QR-UOV is
represented by block matrices in which every component corresponds to an ele-
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ment of a quotient ring. More precisely, we use an injective ring homomorphism
from the quotient ring Fq[x]/(f) to the matrix ring Fℓ×ℓ

q , where f ∈ Fq[x] is a

polynomial with deg f = ℓ. In this study, the image Φf
g of the homomorphism

for g ∈ Fq[x]/(f) is called the polynomial matrix of g. From this homomor-
phism, we can compress the ℓ2 components in Φf

g to ℓ elements of Fq because

the polynomial matrix Φf
g is determined by the ℓ coefficients of g. This can

be considered as a generalization of the block-anti-circulant UOV (BAC-UOV)
presented at SAC 2019 [SP20], which is the case for f = xℓ − 1. Utilizing the
elements of a quotient ring in block matrices is similar to the MLWE prob-
lem [BGV14] because the MLWE problem uses elements of a ring in vectors.
Namely, the transition from UOV to QR-UOV (including BAC-UOV) can be
regarded as analogous to the transition from LWE to MLWE. Therefore, as with
the MLWE problem, this type of research deserves more attention than passing
notice.

QR-UOV requires the public key to be generated considering the symme-
try of the polynomial matrices Φf

g . In UOV, the public key P = (p1, . . . , pm),
which comprises quadratic polynomials pi, is obtained by composing a central
map F = (f1, . . . , fm) and a linear map S, that is, P = F ◦ S. Then, the cor-
responding matrices P1, . . . , Pm of the public key P are given by Pi = S⊤FiS,
where F1, . . . , Fm, and S are matrices corresponding to F and S, respectively.
We cannot construct P1, . . . , Pm as block matrices whose components are poly-
nomial matrices Φf

g by naively choosing F1, . . . , Fm and S as block matrices of

Φf
g . This is because polynomial matrices Φf

g are generally unstable under the
transpose operation. To solve this problem, we introduce the concept of an ℓ×ℓ
invertible matrix W such that WΦf

g is symmetric for any g ∈ Fq[x]/(f); that

is, WΦf
g is stable under the transpose operation. In Theorem 1, we prove that

there exists such a symmetric W for any quotient ring Fq[x]/(f). Then, from
the equations

(Φf
g1)

⊤(WΦf
g2)Φ

f
g1 = (WΦf

g1)
⊤Φf

g2Φ
f
g1 = WΦf

g1g2g1 ,

we can embed theWΦf
g structure into public key matrices by choosing F1, . . . , Fm

as block matrices with WΦf
g and S as a block matrix with Φf

g .
Moreover, we should consider how the choice of f affects the security of

QR-UOV. Indeed, Furue et al. [FKI+20] broke BAC-UOV by transforming its
anti-circulant matrices into diagonal concatenations of two smaller matrices.
This transformation is obtained from the decomposition xℓ−1 = (x−1)(xℓ−1+
· · ·+1). Therefore, we investigate the relationship between the irreducibility of
the polynomial f used to generate the quotient ring Fq[x]/(f) and the existence
of such a transformation for symmetric matricesWΦf

g . As shown in [FIKT21], if
f is irreducible (i.e., Fq[x]/(f) is a field), then there is no such transformation for
matrices WΦf

g , indicating that such an f is resistant to Furue et al.’s structural
attack [FKI+20].
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1.3 Our Purpose of this Document

In this document, we present a multivariate polynomial based digital signa-
ture scheme QR-UOV. The basic structure of QR-UOV is based on the original
scheme at ASIACRYPT 2021 [FIKT21]. Moreover, we adopt the following de-
velopments:

• The EUF-CMA security proof in the QROM is given, and we modify the
signature generation for this proof. (The proof is mainly based on the
result by Kosuge and Xagawa [KX24].)

• We provide a variety of parameter sets.

• We offer more optimized implementation and analyze its performance.

• We give a new security analysis using some recently proposed results.

Organizations The rest of this document is organized as follows. Section 2
prepares some notations. Section 3 gives preliminaries on describing QR-UOV.
Section 4 describes the algorithm specification of QR-UOV. Section 5 provides
the performance analysis. Section 6 gives our security statements. Section 7
analyzes concrete attacks on QR-UOV. Section 8 discusses the advantages and
limitations of QR-UOV.

Acknowledgements We are grateful for help from Makoto Yanagisawa and
Atsuhito Nakase. We also acknowledge Noriki Mo for pointing out inconsisten-
cies between the spec and implementation. We are grateful to Shuhei Nakamura
for his useful technical comments. We thank Tetsutaro Kobayashi, Tomoyuki
Okazaki, Ayumi Ito, and Sari Handa for their assistance in preparing the in-
termediate values. We also thank Naofumi Homma, Rei Ueno, and Hiroshi
Amagasa for their comments on improving the reference implementations.

2 Notations and Parameters

This section describes the notations and parameters used in this document. We
also define more specific basic methods used later in the document.
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2.1 Notations

bit one of the two symbols ‘0’ or ‘1’.
bit string an ordered sequence of bits.
byte a bit string of length 8.
byte string an ordered sequence of bytes.
(a || b) a concatenation vector for given two vectors a and b.
0a the a dimensional zero vector over finite fields.
Fq finite field with q elements for a prime power q.
B the set {0, . . . , 255} of integers represented by a byte.
⌈x⌉ the smallest integer greater than or equal to a given

real number x.
⌊x⌋ the largest integer less than or equal to a given real

number x.
[n] the set {1, . . . , n} for a given positive integer n.

a
$←−A a ∈ A is chosen uniformly at random from A.

IntegerToBits(x, α) computes a base-2 representation of x mod 2α using
big-endian order, ensuring the output is an α-bit string.

IntegerToBytes(x, α) computes a base-256 representation of x mod 256α

using big-endian order, ensuring the output is an
α-byte string.

BitsToInteger(x, α) computes an integer value by α-bit string x using
big-endian order.

BytesToBits(x) converts a byte string x to a bit string using big-endian
order.

Truncl(x) truncates the leftmost l bytes from a byte string x.

We here also give some notations for representation matrices of elements of a
quotient ring described in Subsection 3.2.

f an irreducible polynomial in Fq[x] with degree ℓ.
Φf

g an ℓ× ℓ matrix over Fq corresponding to g ∈ Fq[x]/(f) defined
by equation (4) in Subsection 3.2.

Af a set
{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[x]/(f)
}
.

W an ℓ× ℓ matrix over Fq such that WX is symmetric for any
X ∈ Af .

WAf a set {WX ∈ Fℓ×ℓ
q | X ∈ Af}.

Aa,b
f the set of aℓ× bℓ block matrices whose each component is an

element of Af .
W (a) the aℓ× aℓ block diagonal matrix concatenating W diagonally

a times.
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2.2 Parameters

ℓ, V , M positive integers.
v number of vinegar variables: v = ℓ · V .
m number of oil variables (equals to # of equations): m = ℓ ·M .
n number of variables: n = v +m.
N N = V +M .
λ secuirty parameter.
r a random λ-bit string.
τ length of random byte string input for rejection sampling, which

takes three possible values depending on its specific usage.

3 Preliminaries

Since QR-UOV is an extension of plain UOV, we first review the construction
of plain UOV in Subsection 3.1 to facilitate a description of QR-UOV in Sec-
tion 4. Furthermore, as a preliminary step for the construction of QR-UOV, we
introduce matrices representing elements of a quotient ring in Subsection 3.2.

3.1 Basic Description of UOV used for QR-UOV

This subsection describes the structure of the unbalanced oil and vinegar sig-
nature scheme (UOV) [KPG99]. For variables x = (x1, . . . , xn) over Fq, we call
x1, . . . , xv vinegar variables and xv+1, . . . , xn oil variables.

We first recall the key generation of UOV as follows: We design F =
(f1, . . . , fm) : Fn

q → Fm
q , called a central map, such that each fk with k ∈ [m] is

a quadratic polynomial of the form

fk(x1, . . . , xn) =

v∑
i=1

n∑
j=i

α
(k)
i,j xixj , (1)

where α
(k)
i,j ∈ Fq. Next, we choose a random linear map S : Fn

q → Fn
q to hide the

structure of F . The public key map P is then provided as a polynomial map,

P = F ◦ S : Fn
q → Fm

q , (2)

and the private key comprises F and S. We here omit linear and constant terms
of F and constant terms of S for simplicity.

Next, we describe the inversion of the central map F . When we try to find
x ∈ Fn

q satisfying F(x) = t for a given t ∈ Fm
q , we first choose random values

y1, . . . , yv in Fq as the values of the vinegar variables. We can then easily obtain
a solution for the equation F(y1, . . . , yv, xv+1, . . . , xn) = t, because this is a
linear system of m equations in n− v oil variables from the construction of the
central map (1). If there is no solution to this equation, we choose new random
values y′1, . . . , y

′
v, and repeat the above procedure.
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By using this inversion approach, the signature is generated as follows: Given
a message t ∈ Fm

q to be signed, find a solution y to the equation F(x) = t, and
this gives a signature s = S−1(y) ∈ Fn

q for the message t. The verification is
performed by confirming whether P(s) = t.

Finally, we introduce matrices representing the public and private keys of
UOV. For each polynomial pi of the public key map P, there exists an n × n
matrix Pi such that pi(x) = x⊤ · Pi · x. We call these matrices P1, . . . , Pm as
the public key matrices. Similarly, an n × n matrix Fi can be taken for each
fi with i ∈ [m], and an n × n matrix S is defined to satisfy S(x) = S · x. In
general, these matrices Pi and Fi are taken as symmetric matrices if q is odd,
and are taken as upper triangular matrices if q is even. For these representation
matrices, based on equation (1), Fi has the following form(

∗v×v ∗v×m

∗m×v 0m×m

)
. (3)

Furthermore, from P = F ◦ S, we have

Pi = S⊤FiS (i ∈ [m]).

3.2 Matrix Representation of Quotient Ring Elements

We here introduce polynomial matrices representing elements of a quotient ring.
These matrices are utilized for the construction of QR-UOV in Section 4.

Let ℓ be a positive integer and f ∈ Fq[x] with deg f = ℓ. For any element g
of the quotient ring Fq[x]/(f), we can uniquely define an ℓ × ℓ matrix Φf

g over
Fq such that (

1 x · · · xℓ−1
)
Φf

g =
(
g xg · · · xℓ−1g

)
. (4)

From this equation, we have

xj−1g =

ℓ∑
i=1

(
Φf

g

)
ij
· xi−1 (j ∈ [ℓ]),

and
(
Φf

g

)
ij

is the coefficient of xi−1 in xj−1g. We call the matrix Φf
g the

polynomial matrix of g. The following lemma can be easily derived from this
definition:

Lemma 1. For any g1, g2 ∈ Fq[x]/(f), we have

Φf
g1 +Φf

g2 = Φf
g1+g2 , Φf

g1Φ
f
g2 = Φf

g1g2 .

That is, the map g 7→ Φf
g is an injective ring homomorphism from Fq[x]/(f) to

the matrix ring Fℓ×ℓ
q .
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We let the algebra of the matrices Af :=
{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[x]/(f)
}
. This

is a subalgebra in the matrix algebra Fℓ×ℓ
q from Lemma 1. Every ℓ×ℓ polynomial

matrix Φf
g in Af can be represented by only ℓ elements in Fq, because Φf

g is
determined by the ℓ coefficients of g ∈ Fq[x]/(f). QR-UOV compresses the
public key size of UOV by utilizing this property of Φf

g .
For the construction of QR-UOV, we also introduce the concept of a matrix

W ∈ Fℓ×ℓ
q such that WΦf

g is stable under the transpose operation. Note that

any matrix in WAf := {WX ∈ Fℓ×ℓ
q | X ∈ Af} can also be represented by

only ℓ elements in Fq. In the following theorem, we prove that there exists an
invertible matrix W for any f .

Theorem 1 (Theorem 1 in [FIKT21]). Let f ∈ Fq[x] with deg f = ℓ. Then,
there exists an invertible matrix W ∈ Fℓ×ℓ

q such that WX is a symmetric matrix
for any X ∈ Af .

In the proof of Theorem 1 in [FIKT21], the authors propose a way of con-
structing W satisfying the condition from a nonzero linear map ϕ̄ : Fq[x]/(f)→
Fq such that the ij-component of W is equal to ϕ̄(xi+j−2).

For Af and positive integers N , we define the the set AN,N
f of block matrices

in FℓN×ℓN
q whose every component is an element of Af .

Example 1. For f = x3 − 3x− 1 in F7[x], we can take one element of A2,2
f as

follows 
2 0 2 0 0 1
2 2 6 1 0 3
0 2 2 0 1 0
3 2 5 3 6 5
5 2 3 5 0 0
2 5 2 6 5 0

 .

Every 3× 3 block of this matrix can be represented as an element of Fq[x]/(f),
that is, this matrix can be represented as a 2× 2 matrix over Fq[x]/(f)(

2 + 2x x
3 + 5x+ 2x2 3 + 5x+ 6x2

)
.

We construct QR-UOV using Af with an irreducible f and the extension
field Fqℓ ≃ Fq[x]/(f). See Subsection 7.4 for the rationale behind using an
irreducible polynomial f in QR-UOV.

4 Algorithm Specification

This section defines the algorithms for functions composing QR-UOV. First, we
present the algorithms of key generation, signature generation, and signature
verification in Subsecions 4.1 ,4.2, and 4.3. Next, we give the parameter sets
of QR-UOV in Subsection 4.5. Following that, we list the auxiliary functions
and the pseudorandom generator required for computing the main functions in

10



Subsection 4.6 and 4.8. Finally, we include a note on the basic linear algebra in
Subsection 4.9.

4.1 Key Generation

The algorithm KeyGen (Algorithm 1) outputs a public key pk and a private
key sk. We first recall some notations and give a naive way of generating the
public and private keys of QR-UOV. We then provide a strategy to reduce the
public/private key sizes by restricting the private key to a compact form and
storing expandable data as a seed within the keys and expanding it when needed.
It should be noted that not all data of the public key can be stored as a seed.
Finally, we explain a method of representing the extended public and private
keys by matrices over the extension field Fqℓ .

Algorithm 1 KeyGen()

Output: public key pk ∈ {0, 1}λ ×
(
FM×M
qℓ

)m
and private key sk ∈ {0, 1}2λ

1: (seedpk, seedsk)
$←− {0, 1}2λ ▷ seedpk, seedsk ∈ {0, 1}λ

2: S̄′ ← Expandsk(seedsk) ▷ S̄′ ∈ FV×M
qℓ

3: for i from 1 to m do
4: (P̄i,1, P̄i,2)← Expandpk(seedpk, i)

▷ P̄i,1 ∈ FV×V
qℓ

(symmetric), P̄i,2 ∈ FV×M
qℓ

5: P̄i,3 ← −S̄′⊤P̄i,1S̄
′ + P̄⊤

i,2S̄
′ + S̄′⊤P̄i,2 ▷ P̄i,3 ∈ FM×M

qℓ

6: end for
7: return (pk, sk) =

((
seedpk, {P̄i,3}i∈[m]

)
, (seedsk, seedpk)

)
,

We begin with the notation and naive key generation of QR-UOV. As men-
tioned in Subsection 2.2, let v be the number of vinegar variables, m be the
number of oil variables which is equal to the number of quadratic polynomials,
and n = v + m. We set v, m, and n as multiples of the paremeter ℓ, namely
v = ℓ ·V , m = ℓ ·M , and n = ℓ ·N . The public and private keys of QR-UOV are

represented by elements of AN,N
f and W (N)AN,N

f :=
{
W (N) ·X |X ∈ AN,N

f

}
(see the definitions in Section 3.2). Note that we here use an irreducible poly-
nomial as f of Af from a security perspective stated in Subsection 7.4.

We give a naive way of generating the public and private keys of QR-UOV.

1. Choose Fi (i ∈ [m]) from W (N)AN,N
f as a symmetric matrix with the

lower-right m×m zero-block as in (3).

2. Choose an invertible matrix S from AN,N
f randomly.

3. Compute the public key matrices Pi = S⊤FiS (i ∈ [m]).

Then, Pi (i ∈ [m]) representing the public key map are elements of W (N)AN,N
f

from the following proposition:

11



Proposition 1 (Proposition 1 in [FIKT21]). For X ∈ AN,N
f and Y ∈W (N)AN,N

f ,
we have

X⊤Y X ∈W (N)AN,N
f .

Next, we present the key generation adopted in this specification, which
can reduce the public/private key sizes. We apply a method restricting S to a
specific compact form, which was first proposed by Czypek et al. [CHT12]. For
Pi (i ∈ [m]) and Fi (i ∈ [m]), we define submatrices as follows:

Pi =

(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)
,

Fi =

(
Fi,1 Fi,2

F⊤
i,2 0m×m

)
,

where Pi,1 and Fi,1 are symmetric v × v matrices, Pi,2 and Fi,2 are v × m
matrices, and Pi,3 is a symmetric m ×m matrix. We then suppose to limit S
to the following compact form

S =

(
Iv S′

0m×v Im

)
, (5)

where S′ is a v ×m matrix. Then, from Pi = S⊤FiS (i ∈ [m]), we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2, (6)

0m×m = S′⊤Pi,1S
′ − P⊤

i,2S
′ − S′⊤Pi,2 + Pi,3.

Therefore, we can compute

Pi,3 = −S′⊤Pi,1S
′ + P⊤

i,2S
′ + S′⊤Pi,2.

from Pi,1 ∈ W (V )AV,V
f , Pi,2 ∈ W (V )AV,M

f (i ∈ [m]), and S′ ∈ AV,M
f , where

V = v/ℓ and M = m/ℓ. Since we can take Pi,1, Pi,2, and S′ by expanding
seeds, we can compress the public key into m ×m matrices Pi,3 (i ∈ [m]) and
the λ-bit public seed seedpk for Pi,1, Pi,2 (i ∈ [m]). Similary, we compress
the private key into the λ-bit private seed seedsk for S′. Algorithm 1 uses two
functions Expandsk and Expandpk given in Subsection 4.6 to expand the public
and private keys from the seeds.

Finally, we explain the method of transformating matrices into the exten-
sion field Fqℓ since Algorithm 1 computes matrix operations over Fqℓ for effi-
ciency. This method is called pull-back method [FIKT21]. Since the public key

matrice Pk with k ∈ [m] are elements of W (N)AN,N
f , we can take ℓ matrices

P̄
(0)
k , . . . , P̄

(ℓ−1)
k ∈ FN×N

q satisfying

Pk =

ℓ−1∑
i=0

(
P̄

(i)
k ⊗WΦf

xi

)
,

12



where ⊗ denotes the tensor product. We then can define an N ×N matrix P̄k

over Fq[x]/(f) as follows:

P̄k =

ℓ−1∑
i=0

xiP̄
(i)
k .

By using the same way, we can construct F̄1, . . . , F̄m and S̄ over Fqℓ correspond-
ing to F1, . . . , Fm and S as follows:

Fk =

ℓ−1∑
i=0

(
F̄

(i)
k ⊗WΦf

xi

)
⇒ F̄k =

ℓ−1∑
i=0

xiF̄
(i)
k ,

S =

ℓ−1∑
i=0

(
S̄(i) ⊗ Φf

xi

)
⇒ S̄ =

ℓ−1∑
i=0

xiS̄(i).

Then, it holds P̄k = S̄⊤F̄kS̄ from Pk = S⊤FkS, and F̄k has the form as in (3).
Further, we define a function ϕ corresponding to the above transformation as
follows:

ϕ : Aa,b
f ∋

Φf
g1,1 · · · Φf

g1,b
...

. . .
...

Φf
ga,1

· · · Φf
ga,b

 7−→
g1,1 · · · g1,b

...
. . .

...
ga,1 · · · ga,b

 ∈ Fa×b
qℓ

.

For each k ∈ [m], we then have

ϕ

((
W (N)

)−1

Pk

)
= P̄k, ϕ

((
W (N)

)−1

Fk

)
= F̄k, ϕ (S) = S̄.

4.2 Signature Generation

The algorithm Sign (Algorithm 2) takes a message M and a private key sk as
input and outputs a signature σ. The procedure primarily follows the standard
signature generation of the plain UOV: Invert the central map F by fixing v
values of the vinegar variables, and then multiply S−1 in the form of

S−1 =

(
Iv −S′

0m×v Im

)
,

from equation (5). We here add a modification for the EUF-CMA security proof
proposed by Sakumoto et al. [SSH11].

We describe the inversion of the central map F in the signature generation
of QR-UOV. We first choose values for the vinegar variables y1, . . . , yv ∈ Fq

randomly. We then choose λ-bit random salt r and compute t ∈ Fm
q by applying

Hash on the input concatenating a bit string µ and the salt r, namely t :=
Hash(µ, r), where µ is a hash value of the public seed seedpk and the message
M. If the linear system in the oil variables xv+1, . . . , xn,

F(y1, . . . , yv, xv+1, . . . , xn) = t, (7)

13



Algorithm 2 Sign(M, sk)

Input: message M ∈ B∗ and private key sk ∈ {0, 1}2λ
Output: signature σ ∈ {0, 1}λ × Fm

q

1: (seedsk, seedpk)← sk
2: S̄′ ← Expandsk(seedsk)

3: y = (y1, . . . , yv)
⊤ $←− Fv

q

4: for i from 1 to m do
5: (P̄i,1, P̄i,2)← Expandpk(seedpk, i)

6: ȳ←W (V )ϕ−1
(
P̄i,1

)
y ▷ ȳ ∈ Fv

q

7: Li ← −2ϕ−1
(
S̄′)⊤ ȳ + 2W (V )ϕ−1

(
P̄⊤
i,2

)
y ▷ Li ∈ Fm

q

8: ui ← y⊤ȳ ▷ ui ∈ Fq

9: end for
10: L← (L1, . . . ,Lm)⊤ ▷ L ∈ Fm×m

q

11: u← (u1, . . . , um)
⊤

▷ u ∈ Fm
q

12: µ← SHAKE256(seedpk∥BytesToBits(M), 512)
13: repeat

14: r
$←− {0, 1}λ

15: t← Hash(µ, r) ▷ t ∈ Fm
q

16: until Lx = t− u has solutions for x.
17: Choose one solution (yv+1, . . . , yn)

⊤ ∈ Fm
q of Lx = t− u randomly.

18: s← (y1, . . . , yv, yv+1, . . . , yn)
⊤ −

(
ϕ−1

(
S̄′) · (y1, . . . , yv)⊤ || 0m

)
▷ s ∈ Fn

q

19: return σ = (r, s)

has at least one solution, then we obtain the signature by applying S−1 into
(y1, . . . , yv, yv+1, . . . , yn), where (yv+1, . . . , yn) is a randomly chosen solution
of equation (7). If there exists no solution of equation (7), then we choose a
new salt r and update t until equation (7) has at least one solution. Note that
Algorithm 2 performs a part of operation over extension fields as in Algorithm 1
and uses the function ϕ defined in Subsection 4.1.

The main difference from the signature generation of the plain UOV is that
if equation (7) has no solution, then it chooses a new random salt instead of
selecting new values for the vinegar variable. By doing so, the signature s
satisfying P(s) = Hash(µ, r) is uniformly distributed over Fn

q , and this fact
enables us to prove the EUF-CMA security of QR-UOV (see Subsection 6.2).
This loop iteration does not become a bottleneck since the expected number of
iterations until equation (7) has at least one solution is approximately 2.0 for
any parameter sets by assuming that equation (7) is a randomized system for
xv+1, . . . , xn.
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4.3 Signature Verification

The algorithm Verify (Algorithm 3) takes a message M, a public key pk, and a
signature σ as input and outputs accept or reject. The procedure is the same as
that of the plain UOV. The authenticity of the signature is checked as:

• Compute t = Hash(µ, r), where µ is a hash value of seedpk and M.

• Compute t′ ∈ Fm
q by substituting the signature s ∈ Fn

q into the public key
map P, namely t′ = P(s).

• If t = t′ holds, the signature σ is accepted, otherwise it is rejected.

Algorithm 3 Verify(M, pk, σ)

Input: message M ∈ B∗, public key pk ∈ {0, 1}λ ×
(
FM×M
qℓ

)m
, and

signature σ ∈ {0, 1}λ × Fm
q

Output: accept or reject
1:
(
seedpk, {P̄i,3}i∈[m]

)
← pk

2: (r, s)← σ
3: for i from 1 to m do
4: (P̄i,1, P̄i,2)← Expandpk(seedpk, i)

5: Pi ←W (N)ϕ−1

(
P̄i,1 P̄i,2

P̄⊤
i,2 P̄i,3

)
▷ Pi ∈ Fn×n

q

6: end for
7: µ← SHAKE256(seedpk∥BytesToBits(M), 512)
8: t← Hash(µ, r)

9: t′ ←
(
s⊤P1s, . . . , s

⊤Pms
)⊤

▷ t′ ∈ Fm
q

10: return accept if t = t′ and reject otherwise.

4.4 Representation of Keys and Signature

As a preliminary step, we introduce the representation of polynomial matrices
of the quotient ring. Recall that the block size of the representation matrices
ℓ and an irreducible polynomial f ∈ Fq[x] with deg f = ℓ are fixed. Each
g ∈ Fq[x]/(f) has ℓ coefficients, allowing it to be represented as a concatenation
of ℓ finite field elements, requiring ⌈log2 q⌉ · ℓ bits in total. Since Φf

g is derived
from g, it can also be represented in the same manner.

Then, we describe the representations of the public and private keys and the
signature.

• The public key pk is a concatenation of byte strings representing seedpk
and Pi,3 (i ∈ [m]). The seedpk is stored as a byte string. For Pi,3, each
block matrix WΦf

g in Pi,3 is represented by a polynomial g with ⌈log2 q⌉·ℓ
bits. Since each Pi,3 is a symmetric matrix, only the upper triangular part
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needs to be stored. Therefore, Pi,3 is stored as a byte string converted from

a bit string of length (⌈log2 q⌉ · ℓ) ·
m(m+ℓ)

2ℓ2 ·m, and Pi,3 (i ∈ [m]) is stored
as concatenation of these byte strings.

• The private key sk is a concatenation of byte strings representing seedsk
and seedpk.

• The signature σ is a concatenation of byte strings representing r and s.
The salt r is simply stored as a byte string and s is stored as a byte string
that is converted from a bit string of length ⌈log2 q⌉ · n representing n
finite field elements in Fq.

4.5 Parameter Sets

This subsection provides the parameter sets of QR-UOV. These parameter sets
are proposed in accordance with security levels I, III, and V of the NIST PQC
project [NIS22]. We take 7, 31, and 127 as the number q of the finite field
Fq. The reason that we do not use a finite field with even characteristics is as

follows: If q is even, in a polynomial obtained as x⊤Ax where A ∈W (N)AN,N
f ,

the coefficients corresponding to the non-diagonal components of every diagonal
block are zero owing to the symmetry of WΦf

g .
Tables 1 and 2 provide four parameter sets for each security level, where we

choose the one with q = 127 and ℓ = 3 as the recommended parameters due to
their efficiency and we set the security parameter λ as 128, 192, and 256 for the
security levels I, III, and V, respectively.

In addition, Tables 3 and 4 show auxiliary parameters. The polynomial f
used to define Af is chosen to be irreducible. In Table 4, Ji denotes anti-identity

matrix of size i (e.g. J2 =

(
0 1
1 0

)
).

Here, we give the sizes of the public key, private key, and signature for the
parameter sets. These sizes are determined as follows:

• public key:
(
⌈log q⌉ · m

2(m+ℓ)
2ℓ + λ

)
bits

• private key: 2λ bits

• signature: (⌈log q⌉ · n+ λ) bits

Therefore, the sizes of public/private keys and signature are computed as shown
in Table 5.
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Table 1: Main parameters for security level I, III, and V
SL q v m ℓ

I 127 156 54 3
III 127 228 78 3
V 127 306 105 3

Table 2: Additional parameters for security level I, III, and V
SL q v m ℓ

I
7 740 100 10
31 165 60 3
31 600 70 10

III
7 1100 140 10
31 246 87 3
31 890 100 10

V
7 1490 190 10
31 324 114 3
31 1120 120 10

Table 3: Part 1 of auxiliary parameters
SL (q, v,m, ℓ) n N V M τ1 τ2 τ3

I

(127,156,54,3) 210 70 52 18 4267 2916 82
(7, 740, 100, 10) 840 84 74 10 32629 8947 201
(31, 165, 60, 3) 225 75 55 20 4959 3571 104
(31, 600, 70, 10) 670 67 60 7 19242 4518 116

III

(127,228,78,3) 306 102 76 26 9020 6123 120
(7, 1100, 140, 10) 1240 124 110 14 71432 18461 289
(31, 246, 87, 3) 333 111 82 29 10878 7655 154
(31, 890, 100, 10) 990 99 89 10 41974 9507 169

V

(127,306,105,3) 411 137 102 35 16144 11018 162
(7, 1490, 190, 10) 1680 168 149 19 130305 33694 391
(31, 324, 114, 3) 438 146 108 38 18738 13145 203

(31, 1120, 120, 10) 1240 124 112 12 66236 14326 210

Table 4: Part 2 of auxiliary parameters
(q, ℓ) f W

(127,3) x3 − x− 1

(
J1

J2

)
(7, 10) x10 − 2x− 1

(
J1

J9

)
(31, 3) x3 − x− 1

(
J1

J2

)
(31, 10) x10 − 5x3 − 1

(
J3

J7

)
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Table 5: The public key, private key, and signature sizes in bytes

SL (q, v,m, ℓ)
public key private key signature
(bytes) (bytes) (bytes)

I

(127,156,54,3) 24,255 32 200
(7, 740, 100, 10) 20,641 32 331
(31, 165, 60, 3) 23,641 32 157
(31, 600, 70, 10) 12,266 32 435

III

(127,228,78,3) 71,891 48 292
(7, 1100, 140, 10) 55,149 48 489
(31, 246, 87, 3) 70,983 48 232
(31, 890, 100, 10) 34,399 48 643

V

(127,306,105,3) 173,676 64 392
(7, 1490, 190, 10) 135,407 64 662
(31, 324, 114, 3) 158,421 64 306

(31, 1120, 120, 10) 58,532 64 807

4.6 Auxiliary Functions

We introduce the following auxiliary functions. Note that these functions use
RejSamp (Algorithm 10), which converts a byte string into a vector over Fq, and
RejSampPRG (Algorithm 11), which generates a pseudorandom vector over Fq

from a seed shown in Subsection 4.7.
Expandsk (Algorithm 4) expands the private seed seedsk to S̄′ ∈ FV×M

qℓ
.

Using RejSampPRG, (v1, . . . , vn2
) ∈ Fn2

q with n2 := ℓV M is expanded from
seedsk. Then, ExpandMatrixVxM given in Algorithm 7 converts (v1, . . . , vn2

) to
S̄′. Note that ExpandFql given in Algorithm 9 converts an element of Fℓ

q to one
of Fqℓ . We sample the matrix in row-major order and sample each polynomial in
Fq[x]/(f) = Fqℓ in reverse degree order from the constant term to the coefficient
of xℓ−1.

Algorithm 4 Expandsk(seedsk)

Input: private seed seedsk ∈ {0, 1}λ
Output: a matrix S̄′ ∈ (Fqℓ)

V×M

1: n2 := ℓV M
2: (v1, . . . , vn2)← RejSampPRG(seedsk, 1, τ2, n2) ▷ τ2 = τq,λ(n2)
3: S̄′ ← ExpandMatrixVxM(v1, . . . , vn2)
4: return S̄′

Expandpk (Algorithm 5) expands the public seed seedpk to {P̄i,1}i∈[m], {P̄i,2}i∈[m]

where P̄i,1 is a symmetric matrix in FV×V
qℓ

and P̄i,2 ∈ FV×M
qℓ

. To enable the pub-
lic seed expansion to be executed in parallel, instead of generating all matrices
at once, we define the function Expandpk as a function that produces P̄i,1 and
P̄i,2 for a given counter i. Additionally, P̄i,1 and P̄i,2 are separately generated
within the function to allow further parallel processing. Using RejSampPRG,
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(v1, . . . , vn1) ∈ Fn1
q with n1 := ℓV (V + 1)/2 and (v′1, . . . , v

′
n2
) ∈ Fn2

q with
n2 := ℓV M are expanded from seedpk. Then, ExpandSymmetricMatrixVxV given
in Algorithm 8 and ExpandMatrixVxM convert these two vectors to P̄i,1 and P̄i,2,
respectively. For each matrix, we sample in row-major order and sample each
polynomial in Fq[x]/(f) = Fqℓ in reverse degree order. Note that for P̄i,1 we
sample only the upper-triangular elements due to the symmetry.

Algorithm 5 Expandpk(seedpk, i)

Input: public seed seedpk ∈ {0, 1}λ and counter i ∈ [m]
Output: matrices (P̄i,1, P̄i,2) ∈ (Fqℓ)

V×V × (Fqℓ)
V×M

1: n1 := ℓV (V + 1)/2
2: (v1, . . . , vn1)← RejSampPRG(seedpk, 2i− 1, τ1, n1) ▷ τ1 = τq,λ(n1)
3: P̄i,1 ← ExpandSymmetricMatrixVxV(v1, . . . , vn1)
4: n2 := ℓV M
5: (v′1, . . . , v

′
n2
)← RejSampPRG(seedpk, 2i, τ2, n2) ▷ τ2 = τq,λ(n2)

6: P̄i,2 ← ExpandMatrixVxM(v′1, . . . , v
′
n2
)

7: return (P̄i,1, P̄i,2)

Hash (Algorithm 6) computes the hash value t ∈ Fm
q of the message repre-

sentative µ and the salt r using SHAKE256, where the output of SHAKE256 is
converted to an element of Fm

q by RejSamp.

Algorithm 6 Hash(µ, r)

Input: message µ ∈ B64 and salt r ∈ {0, 1}λ
Output: hash value t ∈ Fm

q

1: (r1, . . . , rτ3)← SHAKE256(BytesToBits(µ)∥r, 8τ3) ▷ ri ∈ B ▷ τ3 = τq,λ(m)
2: t← RejSamp(r1, . . . , rτ3 , τ3,m)
3: return t

Algorithm 7 ExpandMatrixVxM(v1, . . . , vn2
) | n2 := ℓVM

Input: vector (v1, . . . , vn2) ∈ Fn2
q

Output: matrix A ∈ (Fqℓ)
V×M

1: k ← 1
2: for i from 1 to V do
3: for j from 1 to M do
4: Ai,j ← ExpandFql(vk, . . . , vk+ℓ−1)
5: k ← k + ℓ
6: end for
7: end for
8: return A
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Algorithm 8 ExpandSymmetricMatrixVxV(v1, . . . , vn1) | n1 := ℓV (V+1)/2

Input: vector Fq (v1, . . . , vn1) ∈ Fn1
q

Output: symmetric matrix A ∈ (Fqℓ)
V×V

1: k ← 1
2: for i from 1 to V do
3: for j from 1 to V do
4: if j < i then
5: Ai,j ← Aj,i

6: else
7: Ai,j ← ExpandFql(vk, . . . , vk+ℓ−1)
8: k ← k + ℓ
9: end if

10: end for
11: end for
12: return A

Algorithm 9 ExpandFql(v1, . . . , vℓ)

Input: vector (v1, . . . , vℓ) ∈ Fℓ
q

Output: polynomial g ∈ Fqℓ

1: g ←
∑ℓ

i=1 vi · xi−1

2: return g

4.7 Generation of Pseudorandom Finite Field Elements

Elements over Fq are sampled whithin auxiliary functions shown in Subsec-
tion 4.6. A pseudorandom byte string is generated and retrieved for every
⌈log2 q⌉ bit to generate these elements. From each byte, ⌈log2 q⌉ bits are ex-
tracted to retrieve a value in the range [0, 2⌈log2 q⌉). In the range of [0, 2⌈log2 q⌉),
q is the only number that does not belong to Fq, since q is chosen to be a
Mersenne prime in this specification. Therefore, when q is obtained from the
sequence of pseudorandom numbers, q should be skipped and not chosen. Also,
when obtaining the element of Fm

q , the first m numbers that are non q values
should be selected.

The above procedure is called rejection sampling. Algorithm 10 shows the
algorithm RejSamp to obtain a vector over Fq from a byte string Bτ , while
RejSampPRG given in Algorithm 11 generates a pseudorandom byte string using
a pseudorandom generator PRG (see Subsection 4.8) and converts the byte string
into a vector over Fq using RejSamp. Here, the value of τ = τq,λ(n

′) represents
the number of random selections from the set {0, . . . , 2⌈log2 q⌉ − 1} required to
generate n′ random elements over Fq with probability 1− 2−λ. It is derived by

τq,λ(n
′) := min

{
t ∈ N | P (n′, t, q/2⌈log2 q⌉) ≤ 2−λ

}
.
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P (n′, t, p) is the cumulative binomial distribution,

P (n′, t, p) :=

n′−1∑
i=0

(
t

i

)
pi(1− p)t−i = I1−p(t− n′ + 1, n′),

which denotes the probability of less than n′ successes in t independent Bernoulli
trials of success probability p. Iz(a, b) is called the regularized incomplete beta
function, which is suitable for numerical evaluation.

Algorithm 10 RejSamp((r1, . . . , rτ ), τ, n
′)|τ := τq,λ(n′)

Input: byte string (r1, . . . , rτ ) ∈ Bτ , byte length τ , and vector length n′

Output: vector Fq (v1, . . . , vn′) ∈ Fn′

q

1: for j from 1 to τ do
2: vj ← BitsToInteger(BytesToBits(rj) ∧ IntegerToBits(q, 8), log2(q + 1))
3: end for ▷ ∧ is bitwise AND assuming q is Mersenne.
4: k ← n′ + 1
5: while vk = q and k < τ + 1 do
6: k ← k + 1
7: end while
8: for j from 1 to n′ do
9: if vj = q then

10: if k < τ + 1 then
11: vj ← vk, k ← k + 1
12: while vk = q and k < τ + 1 do
13: k ← k + 1
14: end while
15: else
16: vj ← 0
17: end if
18: end if
19: end for
20: return (v1, . . . , vn′) ▷ regard integer in {0, . . . , q − 1} as element of Fq.

Algorithm 11 RejSampPRG(seed, i, τ, n′)

Input: seed seed ∈ {0, 1}λ, counter i, byte length τ , and vector length n′

Output: a pseudorandom sequence (v1, . . . , vn′) ∈ Fn′

q

1: (r1, . . . , rτ )← PRG(seed, i, 8τ)
2: (v1, . . . , vn′)← RejSamp((r1, . . . , rτ ), τ, n

′)
3: return (v1, . . . , vn′).
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4.8 Pseudorandom Generator

Let PRG be a pseudorandom generator that takes a seed seed, a counter i and
an output bit length 8k as inputs and outputs k-byte string, where the seed
size equals to the security parameter λ. We offer two variants for the PRG,
SHAKE [FIP15] and AES counter mode [FIP01].

SHAKE Option PRG(seed, i, 8k) outputs out ∈ Bk computed as:

out← SHAKE(seed∥IntegerToBits(i− 1, 16), 8k),

where SHAKE = SHAKE128 for the security level I and SHAKE = SHAKE256
for the securiy level III and V.

AES Option PRG(seed, i, 8k) outputs out ∈ Bk computed as:

1. b← NULL

2. for j from 1 to ⌈k/16⌉:

x← IntegerToBits(i− 1, 64)∥IntegerToBits(j − 1, 64)

b← b∥AES(seed, x)

3. out← Trunck(b)

AES is set to AES128, AES196, and AES256 for the security levels I, III, and V,
respectively.

4.9 Note on Basic Linear Algebra

Like other UOV schemes, QR-UOV also requires solving a system of linear
equations to generate a signature. A tremendous amount of research exists
on algorithms for solving linear equations, including well-known constant-time
implementations[CKY21, BCH+23]. Although we did not use such an algorithm
in our reference implementation, it should be employed for critical applications.

5 Performance Analysis

Subsection 5.1 provides the performance analysis of QR-UOV on the NIST
reference platform, and Subsection 5.2 provides the analysis on other platforms.

5.1 Performance on the NIST Reference Platform

Tables 6 and 7 show the timing data for optimized implementations, and Tables
8 and 9 show the timing data for reference implementations. The implementa-
tions of Tables 6 and 8 take the AES option for the pseudorandom generator,
while those of Tables 7 and 9 take the SHAKE option. These implementa-
tions are written in C and use neither inline assembly nor intrinsics for special
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processor instructions, but the compiler is not restricted from outputting such
instructions. The optimized versions ignore the 32-bit environment. The exper-
imental environment is as follows.

Processor: AMD EPYC 9654P
Clock Speed: Boost Clock : Up to 3.7GHz, Base Clock: 2.4GHz
Memory: 32GB (16GB RDIMM, 4800MT/s, Single Rank)
Operating System: Linux 5.15.0-112-generic, gcc version 11.4.0
Linux Distribution: Ubuntu 22.04.5 LTS
Compiler: gcc version 11.4.0
Library: OpenSSL 3.0.2 15 Mar 2022
Measured by: supercop-20221122

Table 6: Timing data for C optimized code with AES PRG (Mcycles)
SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 21.491 1.636 1.341
(7, 740, 100, 10) 115.025 33.986 29.850
(31, 165, 60, 3) 30.483 2.359 1.984
(31, 600, 70, 10) 39.790 11.084 8.943

III

(127,228,78,3) 95.017 4.700 3.883
(7, 1100, 140, 10) 469.162 98.253 86.640
(31, 246, 87, 3) 140.115 6.882 5.755
(31, 890, 100, 10) 170.002 35.817 29.750

V

(127,306,105,3) 311.355 11.080 9.228
(7, 1490, 190, 10) 1506.767 235.123 207.230
(31, 324, 114, 3) 418.352 16.020 13.515

(31, 1120, 120, 10) 380.859 63.165 52.604

Table 7: Timing data for C optimized code with SHAKE PRG (Mcycles)
SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 22.923 3.145 2.864
(7, 740, 100, 10) 125.204 44.492 40.469
(31, 165, 60, 3) 32.360 4.270 3.861
(31, 600, 70, 10) 45.509 16.874 14.722

III

(127,228,78,3) 100.160 9.926 9.079
(7, 1100, 140, 10) 519.508 148.382 137.174
(31, 246, 87, 3) 147.834 14.635 13.466
(31, 890, 100, 10) 190.692 56.523 50.449

V

(127,306,105,3) 324.808 24.810 22.727
(7, 1490, 190, 10) 1647.667 378.988 350.925
(31, 324, 114, 3) 433.932 31.584 28.995

(31, 1120, 120, 10) 421.961 104.666 94.098
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Table 8: Timing data for C reference code with AES PRG (Mcycles)
SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 17.402 2.233 1.695
(7, 740, 100, 10) 198.527 37.963 37.817
(31, 165, 60, 3) 25.841 3.001 2.226
(31, 600, 70, 10) 75.705 15.669 15.423

III

(127,228,78,3) 62.897 5.935 4.442
(7, 1100, 140, 10) 837.812 118.583 113.917
(31, 246, 87, 3) 123.594 9.701 7.204
(31, 890, 100, 10) 540.562 70.899 66.663

V

(127,306,105,3) 214.724 15.524 10.966
(7, 1490, 190, 10) 2931.010 319.581 292.849
(31, 324, 114, 3) 279.161 19.549 13.868

(31, 1120, 120, 10) 593.219 80.677 81.371

Table 9: Timing data for C reference code with SHAKE PRG (Mcycles)
SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 18.646 3.573 3.025
(7, 740, 100, 10) 213.867 53.300 53.099
(31, 165, 60, 3) 27.746 4.972 4.235
(31, 600, 70, 10) 82.319 22.397 22.012

III

(127,228,78,3) 68.168 11.279 9.731
(7, 1100, 140, 10) 901.254 182.183 177.605
(31, 246, 87, 3) 135.621 16.928 14.243
(31, 890, 100, 10) 563.553 94.408 89.261

V

(127,306,105,3) 226.526 27.091 22.513
(7, 1490, 190, 10) 3253.714 458.374 430.449
(31, 324, 114, 3) 296.113 36.755 30.987

(31, 1120, 120, 10) 636.598 125.017 124.697
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5.2 Performance on Other Platforms

Tables 10 and 11 show the timing data for the C implementations with the
AVX2 intrinsics, and Table 12 and 13 do that for the AVX512. The experimental
environment is the same as described in Section 5.1.

Table 10: Timing data for C code with AVX2 intrinsics and AES PRG (Mcycles)
SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 8.587 1.586 1.224
(7, 740, 100, 10) 77.115 26.924 25.242
(31, 165, 60, 3) 11.929 2.230 1.715
(31, 600, 70, 10) 28.855 9.518 9.484

III

(127,228,78,3) 32.311 4.599 3.410
(7, 1100, 140, 10) 249.400 79.160 72.424
(31, 246, 87, 3) 46.554 6.679 4.991
(31, 890, 100, 10) 86.827 25.656 24.592

V

(127,306,105,3) 95.579 10.504 7.463
(7, 1490, 190, 10) 721.608 200.626 181.458
(31, 324, 114, 3) 127.786 15.577 11.624

(31, 1120, 120, 10) 168.875 47.262 44.696

Table 11: Timing data for C code with AVX2 intrinsics and SHAKE PRG
(Mcycles)

SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 10.077 3.118 2.741
(7, 740, 100, 10) 95.983 45.832 44.330
(31, 165, 60, 3) 13.739 4.083 3.550
(31, 600, 70, 10) 34.704 15.449 15.368

III

(127,228,78,3) 37.508 9.861 8.678
(7, 1100, 140, 10) 305.856 135.653 128.685
(31, 246, 87, 3) 54.579 14.785 13.052
(31, 890, 100, 10) 109.697 48.765 47.599

V

(127,306,105,3) 109.125 24.067 20.992
(7, 1490, 190, 10) 844.478 322.614 303.588
(31, 324, 114, 3) 142.099 30.352 26.327

(31, 1120, 120, 10) 212.364 91.098 87.995
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Table 12: Timing data for C code with AVX512 intrinsics and AES PRG (Mcy-
cles)

SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 8.542 1.597 1.226
(7, 740, 100, 10) 79.799 27.868 25.922
(31, 165, 60, 3) 11.842 2.237 1.718
(31, 600, 70, 10) 25.602 9.077 9.191

III

(127,228,78,3) 31.643 4.621 3.424
(7, 1100, 140, 10) 246.281 78.941 72.336
(31, 246, 87, 3) 45.758 6.738 5.033
(31, 890, 100, 10) 88.485 26.668 25.560

V

(127,306,105,3) 88.518 10.289 7.334
(7, 1490, 190, 10) 693.961 193.768 175.021
(31, 324, 114, 3) 118.992 15.289 11.431

(31, 1120, 120, 10) 164.299 47.124 44.623

Table 13: Timing data for C code with AVX512 intrinsics and SHAKE PRG
(Mcycles)

SL (q, v,m, ℓ) KeyGen Sign Verify

I

(127,156,54,3) 9.985 3.130 2.748
(7, 740, 100, 10) 98.667 46.819 44.924
(31, 165, 60, 3) 13.794 4.222 3.691
(31, 600, 70, 10) 31.841 15.010 15.113

III

(127,228,78,3) 36.717 9.824 8.604
(7, 1100, 140, 10) 302.556 134.929 128.632
(31, 246, 87, 3) 53.540 14.469 12.736
(31, 890, 100, 10) 111.722 49.818 48.728

V

(127,306,105,3) 102.334 23.880 20.950
(7, 1490, 190, 10) 847.914 347.789 329.495
(31, 324, 114, 3) 133.457 30.072 26.157

(31, 1120, 120, 10) 207.629 90.682 87.848
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6 Expected Security Strength

In this section, we begin by introducing the underlying problems and the se-
curity definitions in Subsection 6.1. Next, we provide our security proof in
Subsection 6.2. Finally, we estimate the complexity of plausible attacks against
our proposed parameter sets in Subsection 6.3. See Section 7 for the details of
each attack.

6.1 Underlying Problems and Security Definitions

We first introduce two problems for the security proof of QR-UOV as follows:

Definition 1 (UOV problem). We let MQq,n,m the set of random quadratic
maps with n variables and m equations over Fq and let UOVq,v,o,m the set of
public key maps of the plain UOV with v vinegar variables, o oil variables, and
m equations over Fq. The UOV problem asks to distinguish a random quadratic
system from a UOV public key. If we let A be a UOV distinguisher algorithm,
then we say the distinguishing advantage of A is

AdvUOV
q,v,o,m(A) =∣∣Pr[A(P) = 1 | P ← MQq,(v+o),m]− Pr[A(P) = 1 | P ← UOVq,v,o,m]

∣∣ .
Definition 2 (QR-MQ problem). Let f be an irreducible polynomial with
deg f = ℓ. We then denote by QRq,n,m,ℓ the set of quadratic maps constructed
as follows

QRq,n,m,ℓ =
{(

x⊤P1x, . . . ,x
⊤Pmx

)
: Fn

q → Fm
q | P1, . . . , Pm ∈W (N)AN,N

f

}
,

where N = n/ℓ. For a randomly chosen P ∈ QRq,n,m,ℓ and t ∈ Fm
q , the QR-MQ

problem asks to compute s such that P(s) = t. If we let A be an adversary,
then we say that the advantage of A against the QR-MQ problem is

AdvQR-MQ
q,n,m,ℓ(A) = Pr[P(s) = t | P ← QRq,n,m,ℓ, t← Fm

q , s← A(P, t)].

We prove the security of QR-UOV in Subsection 6.2, assuming the advan-
tages against the above two problems are negligible. The first assumption is
originally utilized for the security of the plain UOV, and thus seems relatively
well understood. By contrast, the second assumption is inherent in QR-UOV.
Therefore, assessing the hardness of the QR-MQ problem is crucial for provable
security.

Subsequently, we give the definition of the EUF-CMA security, which is the
standard security definition for digital signature schemes.

Definition 3 (EUF-CMA security). Let O be a random oracle, and let A be
an adversary. We define the advantage of A against the EUF-CMA game of
a signature scheme DSS = (KeyGen,SignO,VerifyO) in the (quantum) random
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oracle model as

AdvEUF-CMA
DSS (A) =

Pr[VerifyO(pk,m, σ) = 1 | (pk, sk)← KeyGen(), (m,σ)← AO,SignO(sk,·)(pk)],

where SignO(sk, ·) was not queried on input m. We say DSS is EUF-CMA secure
if its advantage is negligible for any efficient adversary in the security parameter.

Our EUF-CMA security proof mainly depends on a result by Kosuge and Xa-
gawa [KX24], which shows the EUF-CMA security of the modified UOV [SSH11]
assuming the non-invertibility (INV) of the underlying trapdoor function. The
INV is defined as a security property, where given a hard-to-invert function
F : X → Y, it is computationally hard for an adversary to find a preimage
x ∈ X of a random y ∈ Y.

If we denote by QRUOVq,v,m,ℓ the set of public key maps of QR-UOV with
parameters (q, v,m, ℓ), then the advantage of A against the INV game of the
trapdoor function T underlying QR-UOV is given by

AdvINVT (A) = Pr[P(s) = t | P ← QRUOVq,v,m,ℓ, t← Fm
q , s← A(P, t)].

6.2 Security Proof

The proof is divided into three parts: first, we demonstrate INV⇒ EUF-CMA;
next, we show UOV + QR-MQ ⇒ INV; and finally, we establish UOV +
QR-MQ⇒ EUF-CMA by simply combining the two reductions1.

INV ⇒ EUF-CMA Kosuge and Xagawa [KX24] showed the EUF-CMA se-
curity of the modified UOV signature scheme.

Lemma 2 (Proposition 4 in the ePrint version of [KX24], INV ⇒ EUF-CMA
(Modified UOV Signature)). For any quantum EUF-CMA adversary Acma of the
modified UOV mUOV issuing at most qsign classical queries to the signing oracle
and qqro (quantum) random oracle queries to H, there exist an INV adversary
Binv of the trapdoor function T such that

AdvEUF-CMA
mUOV (Acma) ≤ (2qqro + 1)

2 AdvINVT (Binv) +
3

2
q′sign

√
q′sign + qqro + 1

2λ

+ 2 (qqro + 2)

√
q′sign − qsign

2λ
,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

1X ⇒ Y denotes a reduction from X to Y.
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Due to the usage of the pseudorandom generator with the rejection sampling,
Lemma 2 cannot be directly applied to QR-UOV, necessitating modifications
to parts of the proof. By defining a random function modeling SHAKE256 as
H : B64 × {0, 1}λ → Bτ3 , and PRG as Hprg : {0, 1}λ × [m]→ Bτ123, we establish
the following lemma.

Lemma 3 (INV ⇒ EUF-CMA (QR-UOV)). For any quantum EUF-CMA ad-
versary Acma of QR-UOV issuing at most qsign classical queries to the signing
oracle and qqro (quantum) random oracle queries to H, there exists an INV ad-
versary Binv of the trapdoor function T such that

AdvEUF-CMA
QR-UOV (Acma) ≤ (2qqro + 1)

2 AdvINVT (Binv) +
3

2
q′sign

√
q′sign + qqro + 1

2λ

+ 2 (qqro + 2)

√
q′sign − qsign

2λ
+

q′sign +m+ 1

2λ
,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. We divide the proof into three parts, identify the parts requiring con-
siderations specific to QR-UOV, and rewrite them accordingly. Note that a
major difference from the modified UOV signature lies in the random number
generation and the usage of rejection sampling. In QR-UOV, random number
generation is performed using the pseudorandom generator PRG, and its output
is converted into a vector over Fq through the rejection sampling RejSamp.

Before the other modifications, we first modify the game so that it aborts if
RejSamp fails to generate a random vector over Fq. Since the parameters are
set so that the probability of failure in RejSamp is bounded by 2−λ, the product
of 2−λ and the number of RejSamp calls can bound the advantage gap.

Next, we modify the game to enable the simulation of the signing oracle.
To clarify how the simulation of the signing oracle is required, we provide an
overview of the proof of Lemma 2.

Step 1: Using tight adaptive reprogramming [GHHM21], the signing oracle
is modified to repeatedly reprogram the randomly chosen (r, t) satisfy
Hash(µ, r) = t, until t is successfully inverted.

Step 2: The reprogramming for (r, t) resulting in inversion failure is canceled.
Here, semi-classical O2H [AHU19] is used to ensure that the adversary
cannot query H with (µ, r), where r was used during the failed inver-
sion. This ensures that canceling the reprogramming does not affect the
adversary’s view, making this modification feasible.

2The assumption of the random oracle model for PRG instantiated by SHAKE or AES-CTR
is justified by the indifferentiability of these functions from the random function [NAB+20].

3During the execution of Expandsk, the output length of PRG is τ2; therefore, the output
of Hprg must be truncated accordingly.
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Step 3: To simulate signatures without using the private key, a random preim-
age s is selected, and reprogramming is performed to ensure H(µ, r) =
P(s), outputting (r, s) as the signature. This reprogramming ensures that
(r, s) is recognized as a valid signature.

For QR-UOV, which uses the rejection sampling on the output of the hash
function, there is a mismatch between the output of H (i.e., Bτ3) and P(s) ∈ Fm

q .
We modify the proof for the modified UOV signature to fit QR-UOV as follows.

Step 1: Random values are sampled from Bτ3 and used as the output of H
during reprogramming.

Step 2: Reprogramming executed during inversion failure is canceled, as in the
original proof. Then, the signing oracle is performed as follows.

1. Repeat random selection of r until the inversion of t = RejSamp(r)
becomes feasible and let s be the preimage of t (t = P(s) holds.).

2. Reprogram H such that H(µ, r) = r holds, where r is randomly cho-
sen.

3. Outputs (r, s).

Step 3: When simulating the signing oracle, the following steps are performed:

1. Choose s randomly from Fn
q and let t = P(s).

2. Select r randomly from Rt = {r ∈ Bτ3 : RejSamp(r) = t}.
3. Reprogram H such that H(µ, r) = r holds, where r is randomly cho-

sen.

4. Output (r, s).

We demonstrate that the chosen (r, s, t) in Step 3 follows the same distribution
as those selected by the signing oracle in Step 2. As shown by Sakumoto et
al. [SSH11], the preimage s generated through retries in UOV follows a uniform
distribution; therefore, s in Step 3 is sampled from the same distribution as in
Step 2. As a result, t = P(s) in Steps 2 and 3 also follows the same distribution.
Furthermore, given a specific (s, t), the conditional probability of r in Step 2 is
Pr[r | (s, t)] = 1

|Rt| , as r is chosen uniformly until t = P(s) becomes invertible.

This conditional probability also holds in Step 3 since r is uniformly chosen
from Rt. Hence, (r, s, t) is distributed identically in both Step 2 and Step 3.
Since the feasibility of randomly selecting from Rt is not trivial, we provide a
sampling algorithm, that is, InvRejSamp given in Algorithm 12. The simulator
executes InvRejSamp(t, τ3,m) to obtain r in Step 3. Due to the modifications to
the EUF-CMA game, the simulation of the signing oracle has become feasible
in QR-UOV.

Finally, the INV adversary Binv simulates the modified game as follows.
Given the public key map P, Binv randomly selects seedpk and provides pk =
(seedpk, {Pi,3}i∈[m]) to Acma. To ensure that the adversary can recover P from
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Algorithm 12 InvRejSamp((v1, . . . , vn′), τ, n′)|τ := τq,λ(n′)

Input: vector (v1, . . . , vn′) ∈ Fn′

q , vector length τ , and byte length n′

Output: byte string (r1, . . . , rτ ) ∈ Bτ

1: k ← 1
2: for i from 1 to τ do
3: wi

$←− {0, 1, . . . q}
4: end for
5: for i from 1 to n′ do
6: while wk = q and k < τ do
7: k ← k + 1
8: end while
9: if k = τ then

10: go to Line 1 ▷ Retry the procedure since it is failed.
11: end if
12: wk ← vi
13: k ← k + 1
14: end for
15: for i from 1 to k − 1 do

16: ri
$←− {r ∈ B : BytesToBits(r) ∧ IntegerToBits(q, 8) = IntegerToBits(wi, 8)}

17: end for
18: for i from k to τ do
19: ri

$←− B
20: end for
21: return (r1, . . . , rτ )

pk, Binv programs Hprg such that Expandpk(seedpk, i) outputs (P̄i,1, P̄i,2) con-
tained within P. Except for this modification, the reduction proceeds in the
same manner as the proof of Lemma 2.

UOV + QR-MQ ⇒ INV We demonstrate the INV of the underlying trap-
door function of QR-UOV. Before providing the proof, we prepare a lemma
showing a bijection from quadratic maps with the QR structure over Fq to
quadratic maps over Fqℓ . We call this transformation a pull-back method. The
correctness of this statement is trivially derived from the existence of the func-
tion ϕ defined in Subsection 4.1.

Lemma 4. For any irreducible polynomial f with deg f = ℓ, there exists a
bijection from QRq,n,m,ℓ to MQqℓ,n/ℓ,m/ℓ. Similarly, there exists a bijection from
QRUOVq,v,m,ℓ to UOVqℓ,v/ℓ,m/ℓ,m.

We then show the security of the INV game of QR-UOV assuming the diffi-
culty of the UOV and QR-MQ problems.
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Lemma 5 (UOV and QR-MQ ⇒ INV). For any quantum INV adversary Ainv

of the trapdoor function T underlying QR-UOV, there exist adversaries Buov and
Bmq against the UOV problem with parameters (qℓ, v/ℓ, o/ℓ,m) and the QR-MQ
problem with parameters (q, (v +m),m, ℓ), respectively, such that

AdvINVT (Ainv) ≤ AdvUOV
qℓ,v/ℓ,o/ℓ,m(Buov) + AdvQR-MQ

q,(v+m),m,ℓ(Bmq),

where the running times of Buov and Bmq are about that of Ainv.

Proof. We prove the above statement by the following sequence of games.

1. Let Game0 be Ainv’s INV game against the trapdoor function of QR-UOV,
where we have Pr[Game0() = 1] = AdvINVT (Ainv).

2. Let Game1 be the same as Game0 except that the challenger chooses a
random P ∈ QRq,(v+m),m,ℓ without the UOV structure. We can construct

an adversary Buov on the UOV problem with parameters (qℓ, v/ℓ,m/ℓ,m)
as follows: when Buov is given a multivariate quadratic map P̄ with N =
(v+m)/ℓ variables and m equations over Fqℓ , it transforms P̄ into P with
(v + m) variables and m equations over Fq composed of m matrices in

W (N)AN,N
f . This transformation is performed by the inverse of ϕ defined

in Subsection 4.1. Then, Buov runs Ainv on input P. From Lemma 4, if
Buov is given a P̄ ∈ UOVqℓ,v/ℓ,m/ℓ,m, then BAinv

uov simulates Game0, and if

Buov is given a P̄ ∈ MQqℓ,N,m, then BAinv
uov simulates Game1. Therefore, we

have

|Pr[Game0() = 1]− Pr[Game1() = 1]| ≤ AdvUOV
qℓ,v/ℓ,m/ℓ,m(Buov).

3. From the construction, Game1 is the QR-MQ game with patameters (q, (v+
m),m, ℓ), and thus we have Pr[Game1() = 1] = AdvQR-MQ

q,(v+m),m,ℓ(Bmq).

We can confirm the correctness of the statement by combining inequalities from
the game transitions as follows:∣∣∣AdvINVT (Ainv)− AdvQR-MQ

q,(v+m),m,ℓ(Bmq)
∣∣∣ ≤ AdvUOV

qℓ,v/ℓ,o/ℓ,m(Buov)

⇔ AdvINVT (Ainv) ≤ AdvUOV
qℓ,v/ℓ,o/ℓ,m(Buov) + AdvQR-MQ

q,(v+m),m,ℓ(Bmq).

UOV + QR-MQ ⇒ EUF-CMA Combining Lemmas 3 and 5, we obtain
the EUF-CMA security proof of QR-UOV.

Theorem 2 (QR-MQ+UOV⇒ EUF-CMA). For any quantum EUF-CMA ad-
versary Acma of QR-UOV issuing at most qsign classical queries to the signing
oracle and qqro (quantum) random oracle queries to H, there exist adversaries
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Buov and Bmq against the UOV problem with parameters (qℓ, v/ℓ, o/ℓ,m) and the
QR-MQ problem with parameters (q, (v +m),m, ℓ), respectively, such that

AdvEUF-CMA
QR-UOV (Acma) ≤ (2qqro + 1)

2
(
AdvUOV

qℓ,v/ℓ,o/ℓ,m(Buov) + AdvQR-MQ
q,(v+m),m,ℓ(Bmq)

)
+

3

2
q′sign

√
q′sign + qqro + 1

2λ
+ 2 (qqro + 2)

√
q′sign − qsign

2λ

+
q′sign +m+ 1

2λ
,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running times of Buov and Bmq are about that of Acma.

Remark 1. In [CDP23], Chatterjee et al. claimed that there exist some issues
in the EUF-CMA security proof in the ROM given by Sakumoto et al. [SSH11].
QR-UOV uses the modification of the signature generations for the security
proof used in the proof by Sakumoto et al. However, our security reduction is
based on the proof by Kosuge and Xagawa [KX24] that made corrections to the
proof of Sakumoto et al. Thus, the result by Chatterjee et al. does not affect
our security proof.

6.3 Security Estimation of Proposed Parameters

In this subsection, we confirm that the proposed parameters in Subsection 4.5
satisfy security levels I, III, and V of the NIST PQC project by estimating the
complexity of relevant attacks on QR-UOV described in Section 7.

We begin by describing the criteria used to evaluate the security levels. The
security levels I, III, and V indicate that a classical attacker needs more than
2143, 2207, and 2272 classical gates to break the parameters, whereas a quantum
attacker needs more than 261, 2125, and 2189 quantum gates, respectively, from
the call for additional digital signature schemes [NIS22]. The number of gates
required for each attack can be computed using

#gates = #fieldmultiplications ·
(
2 · (log2q)2 + log2q

)
.

Next, we provide a list of the relevant attacks on QR-UOV along with their
associated complexities. As stated in Subsection 6.2, the EUF-CMA security of
QR-UOV can be reduced to the difficulty of the QR-MQ problem and the UOV
problems with parameters (qℓ, v/ℓ,m/ℓ,m), namely UOV with v/ℓ vinegar vari-
ables, m/ℓ oil variables, and m equations over Fqℓ . We here consider the hybrid
approach [BFP09] with Wiedemann XL (WXL) [YCBC07] and the polynomial
XL (PXL) [FK24] as attackers against the (QR-)MQ problem. (See Subsec-
tion 7.2 for the relationship between the difficulty of the QR-MQ problem and
the plain MQ problem.) Also, we consider the Kipnis-Shamir [KS98], reconcilia-
tion [DYC+08], intersection [Beu21], and rectangular MinRank [Beu21] attacks
as attackers against the UOV problem with parameters (qℓ, v/ℓ,m/ℓ,m). In
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addition to these attacks, we consider the claw finding attack. The complexity
of these attacks is evaluated in Table 14.

Furthermore, key recovery attacks on QR-UOV can be performed by treat-
ing QR-UOV as plain UOV with parameters (q, v,m,m) without considering
its structure. In Table 15, we estimate the complexity of three key recov-
ery attacks, the Kipnis-Shamir, reconciliation, and intersection attacks, on the
plain UOV with parameters (q, v,m,m) for each proposed parameter set. (See
Subsection 7.3.4 for the reason that the rectangular MinRank is not applica-
ble to the plain UOV with parameters (q, v,m,m).) Then, one can confirm
that for each attack, the complexity of key recovery attacks on the plain UOV
with (q, v,m,m) is larger than or equal to the one on the plain UOV with
(qℓ, v/ℓ,m/ℓ,m).

Finally, we assess the security levels of the QR-UOV parameter sets. In Ta-
ble 14 and 15, for each parameter set, the upper entry shows the number of clas-
sical gates, whereas the lower entry shows the number of quantum gates. Fur-
thermore, the values in bold indicate the complexity of the best attack against
each parameter set. These tables show that the proposed parameters satisfy
the requirements for each security level I, III, and V. One can confirm that our
proposed parameters for security levels I and III also satisfy security levels II
and IV, respectively.
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Table 14: The complexity of the classical and quantum attacks, the claw finding
attack, and the Hashimoto’s method with WXL (WXL) and PXL on the MQ
problem, and the Kipnis-Shamir (KS), reconciliation (Recon.), intersection (In-
ter.), and rectangular MinRank (RM) attacks on UOV(qℓ, v/ℓ,m/ℓ,m) against
the proposed parameter sets

SL (q, v,m, ℓ)
log2(#gates) in classical (upper)/quantum (lower)

Claw WXL PXL KS Recon. Inter. RM

I

(127,156,54,3)
201 160 150 718 164 460 158

201 132 128 372 164 282 158

(7, 740, 100, 10)
155 184 201 1793 148 1641 157

155 105 136 908 148 869 157

(31, 165, 60, 3)
162 163 152 531 151 343 153

162 117 127 279 151 224 153

(31, 600, 70, 10)
187 164 162 2600 152 2415 157

187 111 134 1312 152 1251 157

III

(127,228,78,3)
286 222 211 1056 231 653 219

286 182 180 542 227 390 219

(7, 1100, 140, 10)
211 262 283 2693 219 2452 229

211 152 188 1359 219 1287 229

(31, 246, 87, 3)
229 226 215 801 221 508 220

229 171 180 415 220 323 220

(31, 890, 100, 10)
261 235 232 3890 216 3585 223

261 164 193 1958 216 1851 223

V

(127,306,105,3)
380 288 279 1414 291 851 277

380 237 238 722 289 505 277

(7, 1490, 190, 10)
281 354 384 3649 277 3291 287

281 213 253 1838 277 1719 287

(31, 324, 114, 3)
296 286 279 1055 283 658 279

296 218 232 543 280 413 279

(31, 1120, 120, 10)
311 280 275 4931 283 4540 290

311 197 230 2479 283 2335 290
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Table 15: The complexity of the classical and quantum key recovery attacks on
UOV(q, v,m,m), the Kipnis-Shamir (KS), reconciliation (Recon.), and intersec-
tion (Inter.) attacks, against the proposed parameter sets

SL (q, v,m, ℓ)
log2(#gates) in classical (upper)/quantum (lower)

KS Recon. Inter.

I

(127,156,54,3)
736 421 772

383 348 527

(7, 740, 100, 10)
1825 1350 2089

928 891 1140

(31, 165, 60, 3)
545 408 666

287 314 450

(31, 600, 70, 10)
2651 1368 2788

1341 1038 1528

III

(127,228,78,3)
1073 596 1115

553 491 753

(7, 1100, 140, 10)
2725 1980 3088

1379 1302 1673

(31, 246, 87, 3)
814 591 980

423 451 653

(31, 890, 100, 10)
3941 2001 4129

1987 1516 2250

V

(127,306,105,3)
1431 782 1477

732 644 997

(7, 1490, 190, 10)
3681 2661 4167

1858 1745 2253

(31, 324, 114, 3)
1069 763 1278

551 581 848

(31, 1120, 120, 10)
4983 2502 5201

2508 1893 2820
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7 Analysis of Attacks against QR-UOV

This section describes relevant attacks on QR-UOV. The rest of this section
is organized as follows. Subsection 7.1 explains the claw finding attack which
finds a collision point. Subsection 7.2 explains the direct attack which directly
finds a signature for a given message. Subsection 7.3 recalls known key recovery
attacks on the plain UOV. Subsection 7.4 discusses the relation between the
irreducibility of the polynomial f constructing the quotient ring of QR-UOV
and its security. Subsection 7.5 describes a way to transform the public key
matrices of QR-UOV into the extension field Fqℓ . Subsection 7.6 provides a
way of transforming the public key matrices over the base field Fq using the
quotient ring structure.

7.1 Claw Finding Attack

This subsection considers the claw finding attack which is also called the birth-
day attack. Very recently, Saarinen [Saa24] proposed a technique to improve
the complexity estimation originally given in [BCC+23, BCH+23]. We apply
this technique for the complexity estimation of claw finding attack in Subsec-
tion 6.3. Note that the reduction factor in the complexity estimation by the
technique of [Saa24] is only 2/(q − 1), and thus this technique does not weaken
the proposed parameters.

For a message representative µ obtained from a messege M, an attacker
computes P(si) for X inputs {si}i∈[X] and Hash(µ, rj) for Y salts {rj}j∈[Y ].
If XY = qm, then there is a collision with probability ≈ 1 − e−1, and the
attacker can output the signature (rj , si) for the massage M. Further, as
mentioned in [Saa24], we can revise this attack by utilizing the property that
P(csi) = c2P(si) for any c ∈ Fq. This can reduce the image of P and Hash
where a collision must occur by a factor of 2/(q − 1) in the case of odd q. Fol-
lowing [BCC+23, BCH+23], we estimate the number of gates required for this
attack considering the cost of multiplication and addition in Fq as follows:

2

(
2

q − 1
· qm ·m · 217 ·

(
2 · (log2q)2 + log2q

)) 1
2

. (8)

In this estimation, we suppose that computing Hash has a bit cost of 217 and
applying a fast enumeration algorithm [FT23] in Fq to evaluate P successively.

For the quantum claw finding attack, it is shown that attackers with limited
time will prefer the classical attacks in [JS19]. Thus, in Subsection 6.3, we
estimated the complexity of the quantum claw finding attack by equation (8).

7.2 Direct Attack

This subsection describes the direct attack, which can be defined as follows:
Given a public key P with n variables and m equations over Fq and a target
t ∈ Fm

q , the direct attack tries to solve the MQ system P(s) = t to find a
signature s.
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We first explain the complexity of solving the MQ system with n ≤ m
(overdetermined), and then show a way of reducing the MQ system with n > m
(underdetermined) into a smaller overdetermined system. Finally, we discuss the
difficulty of the QR-MQ problem to which the security of QR-UOV is reduced
in Theorem 2.

Overdetermined case We provide a way of estimating the complexity of
solving the overdetermined MQ system, since an underdetermined system can
be transformed into an overdetermined system by specifying n − m variables
without disturbing the existence of a solution with high probability. One of
the best-known approaches for algebraically solving the quadratic system is the
hybrid approach [BFP09], which randomly guesses k with 0 ≤ k ≤ n variables
before applying an MQ solver such as F4 [Fau99], F5 [Fau02], and XL [CKPS00].
The guessing process is repeated until a solution is obtained. The complexity
of this approach with the Wiedemann XL (WXL) [YCBC07], which is a variant
of XL, for a classical adversary is given by

min
k

(
O

(
qk · 3 ·

(
n− k + 2

2

)
·
(
dreg + n− k

dreg

)2
))

, (9)

where dreg denotes the degree of regularity of the system. The degree of reg-
ularity dreg for a certain class of polynomial systems called semi-regular sys-
tems [Bar04, BFS03, BFSY05] is known to be the degree of the first non-positive
term in the following series [BFSY05, YC05]:(

1− z2
)m

(1− z)
n−k+1

. (10)

Empirically, the public key system of UOV is considered to be a semi-regular
system. Therefore, this series (10) can be used to estimate the degree of regu-
larity. By using Grover’s algorithm [Gro96], the complexity of a quantum direct
attack is estimated as

min
k

(
O

(
qk/2 · 3 ·

(
n− k + 2

2

)
·
(
dreg + n− k

dreg

)2
))

. (11)

Furthermore, a new variant of the hybrid approach with XL, which is called
polynomial XL (PXL), was proposed in 2021 [FK24]. This PXL reduces the
complexity by performing Gaussian elimination on the matrix over a polynomial
ring, and the complexity of PXL for classical and quantum attackers is given by

O
(
k2 · α ·

(
n−k+dreg

dreg

)
·
(
n+dreg

dreg

)
+ qk ·

(
α2 ·

(
k+dreg

dreg

)
+ αω

))
and O

(
k2 · α ·

(
n−k+dreg

dreg

)
·
(
n+dreg

dreg

)
+ q

k
2 ·
(
α2 ·

(
k+dreg

dreg

)
+ αω

))
,
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respectively, where k is the number of guessed variables and ω = 2.37 is the
constant in the complexity of matrix multiplication. Furthermore, α is given by

α =

dreg∑
d=0

max
{
coeff

(
(1− z)

m−(n−k)
(1 + z)

m
, zd
)
, 0
}
,

where coeff(f, t) denotes the coefficient of a term t in a polynomial f .

Underdetermined case We explain a way of solving the underdetermined
MQ system efficiently. Thomae and Wolf [TW12] proposed a technique for re-
ducing the number of variables and equations when n > m. For α = ⌊ nm⌋ − 1,
they reduce the (n − m + α) variables and α equations and thereby obtain a
quadratic system with m−α variables and equations. Furue et al. [FNT21] im-
proved Thomae and Wolf’s technique supposing to guess values of k variables
as in the hybrid approach, and Hashimoto [Has23] proposed two techniques by
modifying the technique of Furue et al. to enhance efficiency. The complexi-
ties of Hashimoto’s techniques on the MQ system can be estimated using the
complexity of solving the MQ system with n variables and m equations in Fq,
denoted by MQ(q, n,m). Then, the complexity of the Hashimoto’s first tech-
nique is given as

qk ·MQ(q,m− α− k,m− α) + (m− k) ·MQ(q, α, α),

under the condition n−m+k ≥ α · (m−k), and that of the Hashimoto’s second
technique is given as

qk · (MQ(q,m− α− k,m− α) +MQ(q, α, α)) + (m− α− k) ·MQ(q, α, α),

under the condition n − m ≥ α · (m − k − α). In Subsection 6.3, we con-
firm the security of the proposed parameters by the complexity of the hybrid
approach with WXL given by equation (9) using one of these Hashimoto’s tech-
niques which has smaller complexity. Note that it is difficult to combine PXL
and Hashimoto’s techniques since both algorithms utilize the guessed k vari-
ables before substituting k values, and thus we apply Thomae and Wolf [TW12]
technique to PXL to estimate the complexity in Subsection 6.3.

QR-MQ probelm We finally discuss the security of the QR-MQ problem.
In Table 16, for a QR-UOV public key system, we compare the theoretical dreg
and experimental dreg using the F4 algorithm. The theoretical dreg is the de-
gree of regularity of F4 as the smallest degree with a non-positive coefficient
in
(
1− z2

)m
/ (1− z)

m−k
, assuming that the system is semi-regular. The ex-

perimental dreg is the highest degree among the step degrees, where nonzero
polynomials are generated in experiments of F4 using the Magma algebra sys-
tem [BCP97]. In our experiment, we set m to sufficiently large values so that
our computation for one parameter was performed within one day, and v is set
equal to 2m. For the public key of QR-UOV with (v + m) variables and m
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equations, we fix the last v variables and execute the hybrid approach by fixing
k variables additionally. That is, the direct attack is executed on the system of
m equations in m − k variables. Table 16 shows that the degrees of regularity
obtained experimentally are the same as those obtained theoretically. These
results indicate that the difficulty of solving the public key system of QR-UOV
is equivalent to that of solving the randomized MQ system.

Table 16: Theoretical and experimental degree of regularity of public key system
of QR-UOV obtained using the Magma algebra system [BCP97].

(q, v,m, ℓ, k) theoretical dreg experimental dreg

(7, 24, 12, 3, 0) 13 13
(7, 24, 12, 3, 1) 7 7
(7, 24, 12, 3, 2) 6 6
(7, 30, 15, 3, 0) 16 16
(7, 30, 15, 3, 1) 8 9
(7, 30, 15, 3, 2) 7 7

Remark 2. There is a difference between the theoretical and experimental
degrees in Table 16; however, it is not unique to QR-UOV. In the case of
(q, v,m, ℓ, k) = (7, 30, 15, 3, 1) in Table 16, the experimental dreg = 9 is larger
than the theoretical dreg = 8. We conduct an experiment to derive dreg for
a randomized quadratic system with the same parameters, and the result is
dreg = 9. This indicates that the observed difference between theoretical and
experimental dreg is not unique to QR-UOV.

7.3 Key Recovery Attacks on UOV

This subsection recalls some existing key recovery attacks, the Kipnis-Shamir [KS98],
reconciliation [DYC+08], intersection [Beu21], and rectangular MinRank [Beu21]
attacks. For the security of QR-UOV, these key recovery attacks can be per-
formed on the following two problems:

• UOV(qℓ, v/ℓ,m/ℓ,m),

• UOV(q, v,m,m),

where UOV(q, v, o,m) denotes the plain UOV with v vinegar variables, o oil
variables, and m equations over Fq. The first one corresponds to one of the
underlying problems of our security proof obtained by the pull-back trans-
formation described in Lemma 4, and the second one is enabled by ignoring
the quotient ring structure of QR-UOV. This subsection describes the behav-
ior of the key recovery attacks on UOV(q, v, o,m), and thus, by substituting
(qℓ, v/ℓ,m/ℓ,m) and (q, v,m,m) for (q, v, o,m) in the following estimations, we
can obtain the complexity of the key recovery attacks on UOV(qℓ, v/ℓ,m/ℓ,m)
and UOV(q, v,m,m), respectively.
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Recall that the key recovery attacks aim to obtain the subspace S−1(O) of
Fn
q , where O is the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αo)

⊤ ∣∣ αi ∈ Fq

}
.

7.3.1 Kipnis-Shamir Attack

The Kipnis-Shamir attack [KS98] chooses two invertible matrices Wi,Wj from
the set of linear combinations of the representation matrices P1, . . . , Pm for the
public key. Then, it probabilistically recovers a part of the subspace S−1(O) by
computing the invariant subspace of W−1

i Wj . The complexity of the Kipnis-
Shamir attack is estimated as

O
(
qv−o−1 · o4

)
.

Grover’s algorithm [Gro96] can be used to reduce the complexity for a quantum
adversary to

O
(
q

v−o−1
2 · o4

)
.

Then, the complexity of the Kipnis-Shamir attack for classical and quantum
adversaries against UOV(qℓ, v/ℓ,m/ℓ,m) is given as

O
(
qv−m−ℓ · (m/ℓ)4

)
and O

(
q

v−m−ℓ
2 · (m/ℓ)4

)
.

Furthermore, the complexity of the Kipnis-Shamir attack for classical and quan-
tum adversaries against UOV(q, v,m,m) is given as

O
(
qv−m−1 ·m4

)
and O

(
q

v−m−1
2 ·m4

)
.

7.3.2 Reconciliation Attack

The reconciliation attack [DYC+08] treats a vector y of S−1(O) as variables
and solves the quadratic system y⊤Piy = 0 (i ∈ [m]). Here, the dimension of
S−1(O) is o, and thus if we impose affine constraints, we then solve a system of
m equations in n−o = v variables and still have a solution with high probability.

We show how to estimate the complexity of the reconciliation attack by
considering the cases v > m and v < m separately. In the case of v > m, which
is generally satisfied in UOV to prevent the Kipnis-Shamir attack, the system of
equations y⊤Piy = 0 has a large number of solutions. Therefore, to determine a
solution uniquely, we need to solve the following system to find multiple vectors
y1, . . . , yk of S−1(O):{

y⊤j Piyj = 0 (i ∈ [m], 1 ≤ j ≤ k),
y⊤j Piyℓ = 0 (i ∈ [m], 1 ≤ j < ℓ ≤ k).

We here lower bound the complexity of solving this problem by that of solving
the MQ problem with v variables and equations. In the case of v < m, the
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complexity of the reconciliation attack is estimated as that of solving a quadratic
system of m equations in v variables. In both cases, we estimate the complexity
of solving these problems using the hybrid approach with WXL, as given in
equations (9) and (11).

Then, the complexity agianst UOV(qℓ, v/ℓ,m/ℓ,m) is given by

min
k

(
O

(
qℓ·k · 3 ·

(
v/ℓ− k + 2

2

)
·
(
dreg + v/ℓ− k

dreg

)2
))

,

where 0 ≤ k ≤ v/ℓ, since v/ℓ < m. Furthermore, the complexity agianst
UOV(q, v,m,m) is given by

min
k

(
O

(
qk · 3 ·

(
v − k + 2

2

)
·
(
dreg + v − k

dreg

)2
))

,

where 0 ≤ k ≤ v, since v > m.

7.3.3 Intersection Attack

In [Beu21], Beullens proposed a new key recovery attack against UOV, called
an intersection attack. In the case of v < 2o, for an integer k ≥ 2 satisfying
k < v

v−o , let L1, . . . , Lk be k invertible matrices randomly chosen from a set
of linear combinations of the representation matrices P1, . . . , Pm for the public
key. This attack then solves the following equations for y ∈ Fn

q :{
(L−1

j y)⊤Pi(L
−1
j y) = 0 (i ∈ [m], 1 ≤ j ≤ k),

(L−1
j y)⊤Pi(L

−1
ℓ y) = 0 (i ∈ [m], 1 ≤ j < ℓ ≤ k).

(12)

Note that, for a solution z for this system, z is not a vector in S−1(O), but L−1
j z

is a vector in S−1(O). The solution space obtained from the above equation
has ko − (k − 1)v dimensions. Thus, its complexity is equivalent to that of
solving the quadratic system with n− (ko− (k− 1)v) = kv− (k− 1)o variables
and

(
k+1
2

)
m − 2

(
k
2

)
equations owing to its linear dependency. The value of k

is generally chosen such that the complexity of solving the above system takes
the minimum value under the condition of k < v

v−o . On the other hand, in the
case of v ≥ 2o, which is the case of the proposed parameters of QR-UOV, the
intersection attack becomes a probabilistic algorithm, which solves the system
of equation (12) as k = 2 with n variables and (3m − 2) equations and one
of solutions is a target vector with a probability of approximately q−v+2o−1.
Therefore, its complexity is estimated by qv−2o+1 times the complexity of solving
the quadratic system with n variables and (3m− 2) equations. We estimate the
complexity of solving these problems with the complexity of the hybrid approach
with WXL in equations (9) and (11).

Then, the complexity agianst UOV(qℓ, v/ℓ,m/ℓ,m) is given by

min
k

(
O

(
qv−2m+ℓ · qℓ·k · 3 ·

(
n/ℓ− k + 2

2

)
·
(
dreg + n/ℓ− k

dreg

)2
))

,
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where 0 ≤ k ≤ n/ℓ, since v/ℓ > 2m/ℓ. Furthermore, the complexity agianst
UOV(q, v,m,m) is given by

min
k

(
O

(
qv−2m+1 · qk · 3 ·

(
n− k + 2

2

)
·
(
dreg + n− k

dreg

)2
))

,

where 0 ≤ k ≤ n, since v > 2m.

7.3.4 Rectangular MinRank Attack

The rectangular MinRank attack [Beu21] was originally proposed for the Rain-
bow scheme by Beullens, and it tries to solve a MinRank problem obtained
by transforming the public key matrices. Furue and Ikematsu [FI23] showed
that the rectangular MinRank attack is applicable to UOV(qℓ, V,M,m) which
is one of the underlying problems of the security of QR-UOV. Note that we here
suppose that (P1, . . . , Pm), (F1, . . . , Fm), and S are matrices representing the
public and private keys of UOV with parameters (qℓ, V,M,m).

Before describing the rectangular MinRank attack, we introduce a way of
transforming sets of matrices used in the attack. Let (G1, . . . , Gm) be a set of

n-by-n matrices over Fq, and g
(j)
i denotes the j-th column vector of Gi, namely,

Gi =
(
g
(1)
i g

(2)
i · · · g

(n)
i

)
∈ Fn×n

q .

Then, we define the new set (G̃1, . . . , G̃n) of n-by-m matrices as follows:

G̃1 :=
(
g
(1)
1 g

(1)
2 · · · g

(1)
m

)
,

...

G̃n :=
(
g
(n)
1 g

(n)
2 · · · g

(n)
m

)
.

We then obtain (P̃1, . . . , P̃n) and (F̃1, . . . , F̃n) by applying this deformation to
(P1, . . . , Pm) and (F1, . . . , Fm), respectively. Further, we have

(P̃1, . . . , P̃n) = (S⊤F̃1, . . . , S
⊤F̃n) · S.

For the proposed parameter sets shown in Subsection 4.5, we have m >
V > M . From this relation, it is easily seen that the deformation matrices
F̃V+1, . . . , F̃N ∈ FN×m

q are of rank ≤ V since they have the following form:(
∗V×m

0M×m

)
.

Then, there exists a linear combination of P̃1, . . . , P̃N ∈ FN×m
q whose rank is

≤ V . The rectangular MinRank attack utilizes this property to recover the
private key.
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The rectangular MinRank attack tries to find a non-zero element of S−1(O).
As in the case of Rainbow, the rectangular MinRank attack against UOV with
(qℓ, V,M,m) is constructed as follows. Since dim

(
S−1(O)

)
= M , there exists a

non-zero N -by-1 vector with the following form:

a = (a1, a2, . . . , aV+1, 0, . . . , 0)
⊤ ∈ S−1(O).

Then, it is shown that

V+1∑
i=1

aiP̃i = (P̃1, . . . , P̃N ) · a = (S⊤F̃1, . . . , S
⊤F̃N ) · (S · a)

is a linear combination of S⊤F̃v+1, . . . , S
⊤F̃N . Thus, this linear combination is

of rank ≤ V . Namely, the vector a gives a solution to the MinRank problem for
(P̃1, . . . , P̃V+1) with the target rank V . Moreover, we have

p1(a) = · · · = pm(a) = 0.

As a result, the vector a = (a1, a2, . . . , aV+1, 0, . . . , 0)
⊤ we want to find is a

common solution to the following problems:

(i) Rank

(
V+1∑
i=1

aiP̃i

)
≤ V ,

(ii) p1(a) = · · · = pm(a) = 0.

Complexity analysis We then describe the estimation of the complexity to
solve the above problems (i) and (ii). This is done along Beullens’ estima-
tion [Beu21] for the rectangular MinRank attack against Rainbow. Note that
the characteristic of Fqℓ is always odd in QR-UOV. See [FI23] for more details
on complexity estimation.

First, we only consider the problem (i). Fix an integer m′ such that V +1 ≤
m′ ≤ m. Let P̃ ′

i be the N×m′ matrix obtained by removing the column vectors
from (m′+1)-th to m-th of P̃i. Then one considers to apply the support minors
modeling method [BBC+20] to the MinRank problem (P̃ ′

1, . . . , P̃
′
V+1) with the

target rank V . Let I ′ be the ideal in Fqℓ [a, c] generated by the bilinear equations

obtained from the support minors modeling, where c is the set of
(

m′

V+1

)
minor

variables. For b ∈ N, set

R′(b) :=

b∑
i=1

(−1)i+1

(
m′

V + i

)(
N + i− 1

i

)(
V + 1 + b− i

b− i

)
.

Let I ′b,1 be the subspace of (b, 1)-degree homogeneous polynomials of I ′ in

Fqℓ [a, c]. Then, Bardet et al. [BBC+20] calculated that dimF
qℓ
I ′b,1 = R′(b)

for 1 ≤ b ≤ V + 1.
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Next, we extend our analysis to include the problem (ii). We assume that
p1(a), . . . , pm(a) behave as a semi-regular system, where

a = (a1, a2, . . . , aV+1, 0, . . . , 0)
⊤.

Let I be the ideal generated by I ′ and p1(a), . . . , pm(a), namely,

I := I ′ + ⟨p1(a), . . . , pm(a)⟩ ⊂ Fqℓ [a, c].

Moreover, set

G′(t1, t2) :=

(
m′

V

)
t2 +

V+1∑
b=1

((
m′

V

)(
V + b− 1

b

)
−R′(b)

)
tb1t2,

G(t1, t2) := G′(t1, t2) · (1− t21)
m.

Let bmin ∈ N be the minimum of b such that

dimF
qℓ
Ib,1 = dimF

qℓ
Fqℓ [a, c]b,1 − 1.

Then, following Beullens’ estimation, we can state that bmin is predicted by

b
(predict)
min := min {b | G(t1, t2)b,1 ≤ 1} , (13)

where G(t1, t2)b,1 is the coefficient of tb1t2.
Finally, by applying to Ibmin,1 the bilinear XL algorithm with Wiedemann

algorithm [Wie86], we can find a solution a to problem (i) and (ii) with the
following complexity:

3

(
m′

V

)2(
V + bmin − 1

bmin

)2

(V + 1)
2
. (14)

In [FI23], we experimented that bmin is equal to b
(predict)
min for some small param-

eters. Thus, we use b
(predict)
min instead of bmin to estimate the complexity of the

rectangular MinRank attack against QR-UOV theoretically in Subsection 6.3.
Note that it is more efficient to apply the support minors method to rectan-

gular matrices where the number of rows is larger than the number of columns.
Thus, for the parameters with N < m, we estimate the complexity of the at-
tack by considering to apply the MinRank attack after transposing the matrices
P̃1, . . . , P̃N . This operation is clearly possible since the rank of matrix is stable
under transposition.

7.4 Irreducibility of Polynomial f

The public key matrices of QR-UOV are given as block matrices, where each
component is an element of WAf . For the security of QR-UOV, we here dis-
cuss the relation between the irreducibility of the polynomial f of Af and the
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existence of transformation on symmetric matricesWΦf
g into a specific form ma-

trix. Indeed, the security of BAC-UOV [SP20] whose public key is represented
as block anti-circulant matrices was weakened by transforming anti-circulant
matrices into a specific form with zero submatrices [FKI+20]. Therefore, we
have to find f such that there exists no such a transformation on WΦf

g .
In [FIKT21], the authors provided the following three theorems for the trans-

formation on WΦf
g which show the suitability of an irreducible f for QR-UOV.

Theorem 3 (Theorem 4 in [FIKT21]). Let f ∈ Fq[x] be a reducible polynomial
with deg f = ℓ and W be an invertible matrix such that every element of WAf

is a symmetric matrix. If f = f1 · · · fk (k ∈ N), where f1, . . . , fk are distinct
and irreducible, and deg f1 ≤ · · · ≤ deg fk, then there exists an invertible matrix
L ∈ Fℓ×ℓ

q and i ∈ [ℓ− 1] such that for any X ∈WAf ,

L⊤XL =

(
∗i×i 0i×(ℓ−i)

0(ℓ−i)×i ∗(ℓ−i)×(ℓ−i)

)
.

Theorem 4 (Theorem 5 in [FIKT21]). With the same notation as in Theo-

rem 3, if there exists f ′ ∈ Fq[x] such that f ′2 | f , there exists an invertible
matrix L ∈ Fℓ×ℓ

q such that, for any X ∈WAf ,

(L⊤XL)ℓℓ = 0.

Theorem 5 (Theorem 2 in [FIKT21]). Let f ∈ Fq[x] be an irreducible poly-
nomial with deg f = ℓ and W be an invertible matrix such that every element
of WAf is a symmetric matrix. Then, there is no invertible matrix L ∈ Fℓ×ℓ

q

and i, j ∈ [ℓ] such that for any X ∈WAf ,

(L⊤XL)i,j = 0.

Theorems 3 and 4 show that if f is reducible, for any X ∈WAf , X can be
transformed into a matrix with zero submatrices by multiplying an invertible
matrix and its transposition from both sides. In contrast, Theorem 5 shows that
if f is irreducible, there exists no such transformation on WΦf

g . Therefore, we
select an irreducible polynomial as the f of Af used in our proposed QR-UOV.

7.5 Lifting Method over Extension Field

The lifting method was proposed in [FIKT21] as a method of attacking QR-
UOV by diagonalizing the matrices in Af over the extension field Fqℓ . In this
subsection, we show that the lifting method is essentially the same as the pull-
back method given in Subsection 4.1. As a preliminary step, we introduce the
following theorem.

Theorem 6 (Theorem 3 in [FIKT21]). With the same notation as in Theo-
rem 5,
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(i) There exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such that

L−1Φf
xL =


x

xq

xq2

. . .

xqℓ−1

 .

In particular, this L diagonalizes any matrix in Af .

(ii) The matrix L described in (i) satisfies the condition that L⊤WL is diag-
onal. Therefore, we can write

L⊤WL =


α0

α1

. . .

αℓ−1

 .

We recall the idea of the lifting method stated in [FIKT21]. The first and
second statements in Theorem 5 show that for any g ∈ Fq[x]/(f) ∼= Fqℓ the
matrix L⊤WΦf

gL is diagonal. This indicates that P1, . . . , Pm of QR-UOV can
be transformed into block diagonal matrices for which the block size is N ×N .
This indicates that P1, . . . , Pm in QR-UOV can be transformed into block di-
agonal matrices with block size N ×N . Let L(N) = IN ⊗ L be an n× n block
diagonal matrix with block size ℓ (n = ℓ ·N), for which the N diagonal blocks
are L. Then, (L(N))⊤PiL

(N) (i ∈ [m]) become block matrices wherein every
component is in a diagonal form. Furthermore, there exists a permutation ma-
trix A such that (L(N)A)⊤Pi(L

(N)A) is a block diagonal matrix with block size
N , and let L̄ := L(N)A. The transformed matrices L̄⊤PiL̄ can be represented
by (L̄−1SL̄)⊤(L̄⊤FiL̄) (L̄

−1SL̄). Then, L̄⊤FiL̄ is the diagonal concatenation of
ℓ smaller matrices, similar to L̄⊤PiL̄. Furthermore, L̄−1SL̄ is also the diagonal
concatenation of ℓ smaller matrices from (i) in Theorem 6. Then, owing to the
structure of Fi, every diagonal block of L̄⊤FiL̄ has an M ×M zero block, sim-
ilar to Fi. Therefore, each diagonal block of L̄⊤PiL̄ has the same form as the
matrix representing the public key of UOV with V vinegar variables and M oil
variables over Fqℓ . The lifting method proposed in [FIKT21] executes the key
recovery attacks on one of such diagonal blocks.

We show that the lifting method is essentially the same as the pull-back
method. Let A ∈ Fn×n

q be a permutation matrix such that

A⊤ (X ⊗ Y )A = Y ⊗X

for any X ∈ FN×N
q and Y ∈ Fℓ×ℓ

q . Also, we recall the equation in Subsection 4.1

Pk =

ℓ−1∑
i=0

P̄
(i)
k ⊗WΦf

xi .

47



Then the transformation in the above lifting method is described as follows:

A⊤(L(N))⊤PkL
(N)A = A⊤(L(N))⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗WΦf

xi

)
L(N)A

=A⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗ L⊤WΦf

xiL

)
A = A⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗ L⊤WL · L−1Φf

xiL

)
A

=A⊤


ℓ−1∑
i=0

P̄
(i)
k ⊗


α0x

i

α1x
qi

. . .

αℓ−1x
qℓ−1i


A

=

ℓ−1∑
i=0


α0x

i

α1x
qi

. . .

αℓ−1x
qℓ−1i

⊗ P̄
(i)
k

=


α0

∑ℓ−1
i=0 P̄

(i)
k xi

α1

∑ℓ−1
i=0 P̄

(i)
k xqi

. . .

αℓ−1

∑ℓ−1
i=0 P̄

(i)
k xqℓ−1i



=


α0P̄k

α1P̄k,q

. . .

αℓ−1P̄k,qℓ−1

 .

Here, we have set P̄k,qa := (pq
a

i,j)i,j , where P̄k = (pi,j). Therefore, P̄k,q, . . . , P̄k,qℓ−1

are easily recovered from P̄k. Thus, when we consider a key recovery attack us-
ing the lifting method, it is enough to treat only P̄k (k ∈ [m]). Since the
pull-back method is also to execute a key recovery attack on P̄k, we conclude
that a key recovery attack using the pull-back method is the same as that us-
ing the lifting method. The only difference from the pull-back method is that
we can apply the direct attack on the system of L̄⊤PiL̄ (i ∈ [m]) obtained by
applying the lifting method. However, for most cases, this lifting direct attack
is not more efficient than the plain direct attack, since the large finite field Fqℓ

disturbs guessing some variables in the hybrid approach. Therefore, we list only
the complexity of the plain direct attack in Subsection 6.3.

Remark 3. The attacks on SNOVA recently proposed by [CLVVP24] combine
a transformation into the extension field and some existing attacks. One can
confirm that the transformation used in the attacks on SNOVA is equivalent
to the lifting method. As mentioned above, we confirmed that the attack on
the lifted QR-UOV does not weaken the security of QR-UOV. Therefore, these
attacks on SNOVA do not affect the security of QR-UOV.

48



7.6 Multiplying (Φf
x)

(N) to the public key

This subsection introduces a technique to increase the number of public key
matrices by multiplying (Φf

x)
(N) and demonstrates that this technique cannot

be mounted as an effective attack on QR-UOV. The technique is based on the
following observation, which is primarily derived from the method used in the
attack on SNOVA [IA24]. When we multiply (Φf

x)
(N) ∈ Fn×n

q to public key
matrices Pi with i ∈ [m] from the right side, we have

Pi · (Φf
x)

(N) = S⊤ · Fi · S · (Φf
x)

(N)

= S⊤ · Fi · (Φf
x)

(N) · S,

due to the commutativity of Φf
g with g ∈ Fq[x]/(f). Since (Φf

x)
(N) is a block

diagonal matrix, the lower-right m × m submatrix of Fi · (Φf
x)

(N) is the zero
matrix as in the original Fi.

From the above observation, we can use m · ℓ matrices Pi · (Φf
xj−1)

(N) with
i ∈ [m] and j ∈ [ℓ] in applying the key recovery attacks. Note that it is enough

to consider m · ℓ matrices Pi · (Φf
xj−1)

(N) since we have

(Φf
xa)(N)⊤ · Pi · (Φf

xb)
(N) = Pi · (Φf

xa+b)
(N).

By applying this method, we can use more information to recover the private
key compared to the original key recovery attack on UOV(q, v,m,m) over the
base field Fq.

Subsequently, we show that the method increasing the number of public
key matrices is not more efficient than the key recovery attacks over the ex-
tension field Fqℓ . More specifically, we show that the matrices Pi · (Φf

xj−1)
(N)

are essentially the same as the matrices obtained by naturally transforming the
matrices P̄i ∈ FN×N

qℓ
in Subsection 4.1 onto the base field Fq. For a variable

set ȳ = (ȳ1, . . . , ȳN )⊤, we consider the following m quadratic polynomials over
Fqℓ :

ȳ⊤ · P̄i · ȳ (i ∈ [m]). (15)

These form a public key of an instance of UOV(qℓ, V,M,m). For each ȳj , we

set ȳj =
∑ℓ−1

k=0 y
(j)
k xk, that is,

ȳj =
(
1 x · · · xℓ−1

)
·


y
(j)
0

y
(j)
1
...

y
(j)
ℓ−1

 . (16)

Moreover, we set y(j) = (y
(j)
0 , . . . ,y

(j)
ℓ−1)

⊤ and y = (y(1), . . . ,y(N))⊤. Then the

polynomial ȳ⊤ · P̄i · ȳ is represented using the variables y by substituting (16)

into (15). Namely, there exist ℓ quadratic polynomials p
(0)
i (y), . . . , p

(ℓ−1)
i (y) in

n variables y over Fq such that

ȳ⊤ · P̄i · ȳ = p
(0)
i (y) + x · p(1)i (y) + · · ·+ xℓ−1 · p(ℓ−1)

i (y). (17)
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It is clear that the polynomials p
(k)
i (y) obtained in this way form a public key

of UOV(q, v,m,m · ℓ), since P̄1, . . . , P̄m form a public key of UOV(qℓ, V,M,m).

We show the following relation between p
(k)
i (y) and Pi · (Φf

xj−1)
(N):

Theorem 7. For each i ∈ [m], we have〈
p
(0)
i (y), . . . , p

(ℓ−1)
i (y)

〉
Fq

=
〈
y⊤ · Pi · (Φf

xj−1)
(N) · y

∣∣∣ j ∈ [ℓ]
〉
Fq

.

Proof. First, we set X = (1, x, . . . , xℓ−1). Then we obtain the equation ȳ =
(IN ⊗X) · y. Thus, by the definition, we have the following computations:

ȳ⊤ · P̄i · ȳ = y⊤ · (IN ⊗X)⊤ · P̄i · (IN ⊗X) · y
= y⊤ ·

(
P̄i ⊗X⊤X

)
· y

= y⊤ ·

(
ℓ−1∑
h=0

xhP̄
(h)
i ⊗X⊤X

)
· y

= y⊤ ·

(
ℓ−1∑
h=0

P̄
(h)
i ⊗ xhX⊤X

)
· y.

Moreover, by the result for X⊤X in the lemma below, we obtain

y⊤ ·

(
ℓ−1∑
h=0

P̄
(h)
i ⊗X⊤X · Φf

xh

)
· y

=y⊤ ·

(
ℓ−1∑
h=0

P̄
(h)
i ⊗

(
ℓ−1∑
k=0

xkWΦf
zk
· Φf

xh

))
· y

=

ℓ−1∑
k=0

xk · y⊤ ·

(
ℓ−1∑
h=0

P̄
(h)
i ⊗WΦf

xh

)
· (Φf

zk
)(N) · y

=

ℓ−1∑
k=0

xk · y⊤ · Pi · (Φf
zk
)(N) · y.

As a result, for each i and k, we have

p
(k)
i (y) = y⊤ · Pi · (Φf

zk
)(N) · y.

Since z0, z1, . . . , zℓ−1 in Fqℓ are linearly independent over Fq from the lemma
below, the theorem holds.

Lemma 6. (i) xX⊤X = X⊤X · Φf
x.

(ii) There exist z0, . . . , zℓ−1 ∈ Fqℓ such that X⊤X =
∑ℓ−1

k=0 x
kWΦf

zk
.

(iii) {z0, . . . , zℓ−1} are linearly independent over Fq.
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Proof. (i) It is easy to show statement (i) from the definition of Φf
x.

(ii) We set X⊤X =
∑ℓ−1

k=0 x
kYk, where Yk ∈ Fℓ×ℓ

q . Since X⊤X and X⊤X ·Φf
x

are symmetric, Yk and YkΦ
f
x are also symmetric. Thus, we have

W−1(YkΦ
f
x) = W−1Φf

x

⊤
Yk = Φf

xW
−1Yk.

This implies that W−1Yk and Φf
x are commutative. Therefore, there exists

zk ∈ Fℓ
q such that W−1Yk = Φf

zk
.

(iii) By the definition of X,

X⊤X =


X

XΦf
x

...

XΦf
xℓ−1

 =

ℓ−1∑
k=0

xi


ek+1

ek+1 · Φf
x

...

ek+1 · Φf
xℓ−1

 ,

where ek+1 = (0, . . . , 0,
k+1
1 , 0 . . . , 0). Therefore, we haveWΦf

zk
=


ek+1

ek+1 · Φf
x

...

ek+1 · Φf
xℓ−1

.

Since the first row of WΦf
zk

is ek+1, it is clear that WΦf
z0 , . . . ,WΦf

zℓ−1
are lin-

early independent. Thus, (iii) holds.

From Theorem 7, we see that the Fq-vector space spanned by m · ℓ polyno-

mials y⊤ · Pi · (Φf
xj−1)

(N) · y discussed above is the same as that spanned by

the public key p
(k)
i (y) of UOV (q, v,m,m · ℓ) obtained from a public key of

UOV(qℓ, V,M,m) by transforming onto the base field Fq. At present, it is not
known effective attacks on UOV over Fℓ

q by utilizing the transformation of its
public key into polynomials over the base field Fq. Indeed, we confirmed that

the key recovery attacks on the polynomials p
(k)
i (y) for our proposed parameter

sets are not efficient. In conclusion, the key recovery attacks using Pi ·(Φf
xj−1)

(N)

or p
(k)
i (y) do not weaken the security of QR-UOV.

8 Advantages and Limitations

The main advantages of QR-UOV are

• Public key and signature sizes. The plain UOV is known as a scheme
with a small signature and a large public key. (The first round parameters
in security level I have approximately 50KB public key and 100B signa-
ture [BCD+23].) Our proposed parameter sets with q = 127 and ℓ = 3
reduce the public key size by approximately 50-60% compared with the
plain UOV (approximately 20KB in security level I) with a few hundred
bits of signature.
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• Efficiency. The signature generation and verification processes consist of
simple linear algebra operations over small finite fields (e.g. F7, F31, and
F127) and thus QR-UOV can be implemented very efficiently.

• Security. The EUF-CMA security of QR-UOV is formally proven in the
QROM assuming the difficulty of two problems, the UOV and QR-MQ
problems. The security of the plain UOV is based on the UOV problem
and thus it seems relatively well understood. By contrast, the QR-MQ
problem is a new assumption generated by us to construct our security
proof. Though there exists no formal reduction from the QR-MQ prob-
lem into the plain MQ problem, we provide some experimental facts that
indicate that the difficulty of solving the QR-MQ problem is equivalent to
that of solving the plain MQ problem.

• Simplicity. The design of the plain UOV is extremely simple, and QR-
UOV is a natural extension of UOV utilizing the quotient rings structure.
We can consider that the research undertaken to obtain from UOV to QR-
UOV corresponds to that obtained from LWE to MLWE, where MLWE
problem is a generalization of LWE using a module comprising vectors
over a ring. Therefore, it requires only a minimum knowledge of algebra
to understand and implement QR-UOV.

The main disadvantage of QR-UOV is the large size of the public key com-
pared with other post-quantum signature schemes such as lattice-based signa-
tures. As we mentioned above, the public key size of QR-UOV is reduced from
that of the plain UOV. However, some selected lattice-based signature schemes
have further small public keys with approximately 1000B in security level I. This
disadvantage might make it difficult to apply QR-UOV to constrained devices
such as smart cards. However, the increase in memory capabilities in the future
will relax the impact of this disadvantage.
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Gröbner bases without reduction to zero (F5). In ISSAC 2002,
pages 75–83. ACM, 2002.

[FI23] Hiroki Furue and Yasuhiko Ikematsu. A new security analysis
against MAYO and QR-UOV using rectangular MinRank attack.
In Junji Shikata and Hiroki Kuzuno, editors, Advances in Informa-
tion and Computer Security, pages 101–116, Cham, 2023. Springer
Nature Switzerland.

[FIKT21] Hiroki Furue, Yasuhiko Ikematsu, Yutaro Kiyomura, and Tsuyoshi
Takagi. A new variant of unbalanced oil and vinegar using quo-
tient ring: QR-UOV. In Mehdi Tibouchi and Huaxiong Wang, edi-
tors, Advances in Cryptology – ASIACRYPT 2021, pages 187–217,
Cham, 2021. Springer International Publishing.

[FIP01] FIPS PUB 202, Advanced Encryption Standard (AES). National
Institute of Standards and Technology, NIST FIPS PUB 197, U.S.
Department of Commerce, November 2001. U.S.Department of
Commerce/National Institute of Standards and Technology.

[FIP15] FIPS PUB 202, SHA-3 standard: Permutation-based hash and
extendable-output functions. National Institute of Standards and
Technology, NIST FIPS PUB 202, U.S. Department of Commerce,
August 2015. U.S.Department of Commerce/National Institute of
Standards and Technology.

55



[FIP24] FIPS PUB 204, module-lattice-based digital signature stan-
dard. National Institute of Standards and Technology, NIST
FIPS PUB 204, U.S. Department of Commerce, October 2024.
U.S.Department of Commerce/National Institute of Standards and
Technology.

[FK24] Hiroki Furue and Momonari Kudo. Polynomial XL: A variant of
the XL algorithm using Macaulay matrices over polynomial rings.
In Markku-Juhani Saarinen and Daniel Smith-Tone, editors, Post-
Quantum Cryptography, pages 109–143, Cham, 2024. Springer Na-
ture Switzerland.

[FKI+20] Hiroki Furue, Koha Kinjo, Yasuhiko Ikematsu, Yacheng Wang, and
Tsuyoshi Takagi. A structural attack on block-anti-circulant UOV
at SAC 2019. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography, pages 323–339, Cham, 2020. Springer In-
ternational Publishing.

[FNT21] Hiroki Furue, Shuhei Nakamura, and Tsuyoshi Takagi. Improving
Thomae-Wolf algorithm for solving underdetermined multivariate
quadratic polynomial problem. In Jung Hee Cheon and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography, pages 65–78, Cham,
2021. Springer International Publishing.

[FT23] Hiroki Furue and Tsuyoshi Takagi. Fast enumeration algorithm
for multivariate polynomials over general finite fields. In Thomas
Johansson and Daniel Smith-Tone, editors, Post-Quantum Cryptog-
raphy, pages 357–378, Cham, 2023. Springer Nature Switzerland.
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