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1 INTRODUCTION 3

1 Introduction

This document provides recommendations for implementation of the PSEC-KEM key encapsu-
lation mechanism. We can utilize the mechanism for key agreement schemes. This document
covers the following issues:

• cryptographic primitives: KGP-PSEC, EP-PSEC, DP-PSEC

• key encapsulation mechanisms: ES-PSEC-KEM

1.1 Overview

The organization of this document is as follows:

• Section 1 is an introduction.

• Section 2 defines some notations.

• Section 3 defines some data types and conversions.

• Section 4 defines the PSEC private and public keys, which are used in KGP-PSEC, EP-
PSEC, DP-PSEC.

• Section 5 defines several cryptographic primitives, for the PSEC-KEM key encapsulation
mechanism.

• Section 6 defines the key encapsulation mechanism.

• Section 7 defines the encoding method for the key encapsulation mechanism.

• Section 8 defines some auxiliary functions used in this document.
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3 DATA TYPES AND CONVERSIONS 4

2 Notation

N the set of natural integers
a := b assign b to a.
IFqm a finite field with qm elements, where q is a prime.
O a point at infinity on an elliptic curve
{0, 1}i the set of all bit strings of length i

{0, 1}∗
∞⋃

i=0

{0, 1}i

{0, 1, · · · , 255}i the set of all octet strings of length i

{0, 1, · · · , 255}∗
∞⋃

i=0

{0, 1, · · · , 255}i

|| a concatenation operator for two bit strings or
a concatenation operator for two octet strings,
for example, (0, 1, 0, 0) || (1, 1, 0) = (0, 1, 0, 0, 1, 1, 0) for bit strings,
(4, 3) || (6, 2) = (4, 3, 6, 2) for octet strings

⊕ the bit-wise exclusive-or operation
dye the least integer greater than or equal to y
byc the greatest integer less than or equal to y
a mod m the least non negative integer b which satisfies m|(b− a) for a,m ∈ N

The concatenation operator ’||’ is often omitted.

3 Data types and conversions

The schemes specified in this document involve operations using several different data types.
Figure 1 illustrates which conversions are needed and where they are described.

3.1 BitString-to-OctetString Conversion(BS2OSP)

Bit strings should be converted to octet strings as described in this section. Informally the idea
is to pad the bit string with 0’s on the left to make its length a multiple of 8, then chop the
result up into octets. Formally the conversion routine, BS2OSP(B, l), is specified as follows:

Input:
B : a bit string of length l bits
l : an integer

Output:
M : an octet string of length n = dl/8e octets

Steps:
Convert the bit string B = B0B1 . . . Bl−1 to an octet string M = M0M1 . . .Mn−1 as
follows:

1. For 0 < i ≤ n− 1, let:

Mi := Bl−8−8(n−1−i)Bl−7−8(n−1−i) . . . Bl−1−8(n−1−i)

.
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Figure 1: Converting between data types

2. Set the leftmost 8n − l bits in M0 to 0’s, and the rightmost l + 8 − 8n bits to
B0B1 . . . Bl+7−8n.

3. Output M .

3.2 OctetString-to-BitString Conversion(OS2BSP)

Octet strings should be converted to bit strings as described in this section. Informally the
idea is simply to view the octet string as a bit string instead. Formally the conversion routine,
OS2BSP(M, l), is specified as follows:

Input:
M : an octet string of length n = dl/8e octets
l : an integer

Output:
B : a bit string of length l bits
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Steps:
Convert the octet string M = M0M1 . . . Mn−1 to a bit string B = B0B1 . . . Bl−1 as follows:

1. For 0 < i ≤ n− 1, set:

Bl−8−8(n−1−i)Bl−7−8(n−1−i) . . . Bl−1−8(n−1−i) := Mi.

2. Ignore the leftmost 8n − l bits of M0, and set B0B1 . . . Bl+7−8n to the rightmost
l + 8− 8n bits of M0.

3. Output B.

3.3 Integer-to-OctetString Conversion(I2OSP)

Integers should be converted to octet strings as described in this section. Informally the idea
is to represent the integer in binary then convert the resulting bit string to an octet string.
Formally the conversion routine, I2OSP(x, l), is specified as follows:

Input:
x : a nonnegative integer
l : an integer

Output:
M : an octet string of length n = dl/8e octets

Errors:
“invalid”

Steps:

1. If x ≥ 2l, assert “invalid” and stop.
2. Determine the x’s base-256 representation, xi ∈ {0, · · · , 255} such that

x = xn−128(n−1) + xn−228(n−2) + · · ·+ x128 + x0

3. For 0 ≤ i ≤ n− 1, set Mi = xn−1−i, and let

M := M0M1 . . .Mn−1.

4. Output M .

3.4 OctetString-to-Integer Conversion(OS2IP)

Octet strings should be converted to integers as described in this section. Informally the idea
is simply to view the octet string as the base 256 representation of the integer. Formally the
conversion routine, OS2IP(M, l), is specified as follows:

Input:
M : an octet string of length n = dl/8e octets
l : an integer

Output:
x : an integer

Steps:
Convert M = M0M1 . . . Mn−1 to an integer x as follows:

1. View each Mi as an integer in {0, . . . , 255}, and output x such that

x :=
n−1∑

i=0

28(n−1−i)Mi mod 2l.
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3.5 Field Element-to-Integer Conversion(FE2IP)

Field elements should be converted to integers as described in this section. A field element
should be represented as a polynomial with integer coefficients, which can be represented as a
sequence of the coefficients. Informally the idea is simply to view the sequence of the coefficients
as the radix-q representation of the integer, where q is the characteristic of the field. Formally
the conversion routine, FE2IP(a), is specified as follows:

System Parameters:
IFqm : a finite field with qm elements where q is a prime, and m > 0 is an integer

Input:
a : a field element in IFqm

Output:
x : an integer in {0, . . . , qm − 1}

Steps:
Convert the field element a to a integer x as follows:

if m = 1:
The field element a must be represented as an integer in {0, . . . , qm − 1}.
1: Output x such that x := a

if m > 1:
The field element a must be represented as a polynomial of at most (m−1)-th degree
with coefficients in {0, . . . , q − 1}. Let β be the variable of the polynomial.
1: Determine the coefficients ai ∈ {0, . . . , q− 1} for i ∈ {0, . . . ,m− 1} which satisfy

a =
m−1∑

i=0

aiβ
i

2: Output x such that

x :=
m−1∑

i=0

aiq
i

3.6 Integer-to-Field Element Conversion(I2FEP)

Integers should be converted to field elements as described in this section. A field element should
be represented as a polynomial with integer coefficients, and it can be represented as a sequence
of the coefficients. Informally the idea is to represent the integer with radix-q positional number
system where q is the characteristic of the field, and then convert the each digit to the each
coefficient of the polynomial. Formally the conversion routine, I2FEP(x), is specified as follows:

System Parameters:
IFqm : a finite field with qm elements where q is a prime, and m > 0 is an integer

Input:
x : an integer in {0, . . . , qm − 1}

Output:
a : a field element in IFqm

Steps:
Convert the integer x to a field element a as follows:

NTT Information Sharing Platform Laboratories, NTT Corporation
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if m = 1:
A field element of IFqm must be represented as an integer in {0, . . . , qm − 1}.
1: Output a such that a := x.

if m > 1:
A field element of IFqm must be represented as a polynomial of at most (m − 1)-th
degree with coefficients in {0, . . . , q − 1}. Let β be the variable of the polynomial.
1: Expand x into it’s radix q representation xi ∈ {0, . . . , q−1} for i ∈ {0, . . . , m−1}

which satisfy

x =
m−1∑

i=0

xiq
i

2: Output a such that

a :=
m−1∑

i=0

xiβ
i

3.7 FieldElement-to-OctetString Conversion(FE2OSP)

The conversion routine, FE2OSP(a, l), is specified as follows:

Input:
a : a field element
l : an integer

Output:
M : an octet string

Steps:
Output M such that

M := I2OSP(FE2IP(a), l).

3.8 OctetString-to-FieldElement Conversion(OS2FEP)

The conversion routine, OS2FEP(M, l), is specified as follows:

Input:
M : an octet string
l : an integer

Output:
a : a field element

Steps:
Output a such that

a := I2FEP(OS2IP(M, l)).

3.9 EllipticCurvePoint-to-OctetString Conversion (ECP2OSP)

Elliptic curve points should be converted to octet strings as described in this section. Informally
the idea is that, if point compression is being used, the compressed y-coordinate is placed in
the leftmost octet of the octet string along with an indication that point compression is on, and
the x-coordinate is placed in the remainder of the octet string; otherwise if point compression
is off, the leftmost octet indicates that point compression is off, and remainder of the octet
string contains the x-coordinate followed by the y-coordinate. Formally the conversion routine,
ECP2OSP(P, l), is specified as follows:

NTT Information Sharing Platform Laboratories, NTT Corporation
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Options:
E : an elliptic curve parameter
R : Compressed, Uncompressed, or Hybrid

Input:
P : a point on an elliptic curve over IFqm

l : an integer
Output:

M : an octet string of length n

where





n = 1 if P = O,
n = dl/8e+ 1 if P 6= O and R is Compressed,
n = 2dl/8e+ 1 if P 6= O and R is Uncompressed or Hybrid.

Steps:
Convert P to an octet string M = M0M1 . . .Mn−1 as follows:

1. If P = O, output M := 0016 .
2. If P = (x, y) 6= O and R = Compressed, proceed as follows:

2.1. Set an octet string X := FE2OSP(x, l).
2.2. Derive from y a single bit ỹ as follows (this allows the y-coordinate to be repre-

sented compactly using a single bit):
2.2.1. If q is an odd number, set ỹ := y0 mod 2 where y = ym−1β

m−1 + · · · +
y1β + y0.

2.2.2. If q = 2 ,set ỹ := 0 if x = 0, otherwise compute z = zm−1β
m−1 + · · · +

z1β + z0 such that z = yx−1 and set ỹ := z0.
2.3. If ỹ = 0, assign the value 0216 to the single octet L. If ỹ = 1, assign the value

0316 to the single octet L.
2.4. Output M := L‖X.

3. If P = (x, y) 6= O and R = Uncompressed, proceed as follows:
3.1. Set an octet string X := FE2OSP(x, l).
3.2. Set an octet string Y := FE2OSP(y, l).
3.3. Output M := 0416‖X‖Y .

4. If P = (x, y) 6= O and R = Hybrid, proceed as follows:
4.1. Set an octet string X := FE2OSP(x, l).
4.2. Set an octet string Y := FE2OSP(y, l).
4.3. Derive from y a single bit ỹ as follows (this allows the y-coordinate to be repre-

sented compactly using a single bit):
4.3.1. If q is an odd number, set ỹ := y0 mod 2 where y = ym−1β

m−1 + · · · +
y1β + y0.

4.3.2. If q = 2 ,set ỹ := 0 if x = 0, otherwise compute z = zm−1β
m−1 + · · · +

z1β + z0 such that z = yx−1 and set ỹ := z0.
4.4. If ỹ = 0, assign the value 0616 to the single octet L. If ỹ = 1, assign the value

0716 to the single octet L.
4.5. Output M := L‖X‖Y .

3.10 OctetString-to-EllipticCurvePoint Conversion(OS2ECPP)

Octet strings should be converted to elliptic curve points as described in this section. Informally
the idea is that, if the octet string represents a compressed point, the compressed y-coordinate
is recovered from the leftmost octet, the x-coordinate is recovered from the remainder of the
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octet string, and then the point compression process is reversed; otherwise the leftmost octet
of the octet string is removed, the x-coordinate is recovered from the left half of the remaining
octet string, and the y-coordinate is recovered from the right half of the remaining octet string.
Formally the conversion routine, OS2ECPP(M, l), is specified as follows:

Option:
E : an elliptic curve parameter

Input:
M : an octet string which is either

the single octet 0016,
an octet string of length n = dl/8e+ 1, or
an octet string of length n = 2dl/8e+ 1

l : an integer
Output:

P : an elliptic curve point
Errors:

“invalid”
Steps:

Convert M to an elliptic curve point P as follows:

1. If M = 0016 , output P := O.
2. If M has length dl/8e+ 1 octets, proceed as follows:

2.1. Parse M = L‖X as a single octet L followed by dl/8e octets X.
2.2. Set x := OS2FEP(X, l).
2.3. If L = 0216, set ỹ := 0, and if L = 0316, set ỹ := 1. Otherwise assert “invalid”

and stop.
2.4. Derive from x and ỹ an elliptic curve point P := (x,y), where:

2.4.1. If q is an odd number, compute the field element w := x3 + ax + b ,and
compute a square root γ of w in IFqm . Assert “invalid” and stop if there
are no square roots in IFqm , otherwise set y := γ if β0 ≡ ỹ mod 2, and set
y := −γ if γ0 6≡ ỹ mod 2, where γ = γm−1β

m−1 + · · ·+ γ1β + γ0.
2.4.2. If q = 2 and x = 0, set y := b2m−1

in IFqm .
2.4.3. If q = 2 and x 6= 0, compute the field element γ := x + a + bx−2 in IFqm ,

and find an element z = zm−1β
m−1 + · · ·+ z1β + z0 such that z2 + z = γ in

IFqm . Assert “invalid” and stop if no such z exists, otherwise set y := xz in
IFqm if z0 = ỹ, and set y := x(z + 1) in IFqm if z0 6= ỹ.

2.5. Output P := (x, y).
3. If M has length 2dl/8e+ 1 octets, proceed as follows:

3.1. Parse M = L‖X‖Y as a single octet L followed by dl/8e octets X followed by
dl/8e octets Y .

3.2. Check that L = 0416 or 0616 or 0716. If L 6= 0416 or 0616 or 0716, assert “invalid”
and stop.

3.3. set x := OS2FEP(X, l).
3.4. set y := OS2FEP(Y, l).
3.5. If P := (x, y) does not satisfy the defining equation of the elliptic curve E, then

assert “invalid” and stop.
3.6. Output P := (x, y).
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3.11 Integer-to-BitString Conversion(I2BSP)

Integers should be converted to bit strings as described in this section. Informally the idea is
to represent the integer in binary. Formally the conversion routine, I2BSP(x, l), is specified as
follows:

Input:
x : a nonnegative integer
l : an integer

Output:
B : a bit string of length l bits

Errors:
“invalid”

Steps:

1. If x ≥ 2l, assert “invalid” and stop.
2. Determine the x’s base-2 representation, xi ∈ {0, 1} such that

x = xl−12l−1 + xl−22l−2 + · · ·+ x12 + x0

.
3. For 0 ≤ i ≤ l − 1, set Bi := xl−1−i, and let

B := B0B1 . . . Bl−1.

4. Output B.

3.12 BitString-to-Integer Conversion(BS2IP)

Bit strings should be converted to integers as described in this section. Informally the idea is
simply to view the bit string as the base 2 representation of the integer. Formally the conversion
routine, BS2IP(B, l), is specified as follows:

Input:
B : a bit string of length l bits
l : an integer

Output:
x : an integer

Steps:
Convert B = B0B1 . . . Bl−1 to an integer x as follows:

1. View each Bi as an integer in {0, 1}, and output x such that

x :=
l−1∑

i=0

2(l−1−i)Bi.

4 Key types

In this section two types of keys are defined; PSEC private key and PSEC public key, which are
used in three cryptographic primitives (KGP-PSEC, EP-PSEC, DP-PSEC) of PSEC-KEM.
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4.1 PSEC private key

A PSEC private key is a following value:

• s, a nonnegative integer

4.2 PSEC public key

A PSEC public key is the 4-tuple (E, W,KDF, hLen), where the components have the following
meanings:

• E, an elliptic curve parameter

• W , a point on E

• KDF , the choice from key derivation functions

• hLen, a nonnegative integer

An elliptic curve parameter E is the 9-tuple (q, m, f(β),a, b, P, p, pLen, qmLen), where the
components have the following meanings:

• q, a prime number

• m, a positive integer

• f(β), a monic irreducible polynomial of degree m over IFq

• a, an element in IFqm

• b, an element in IFqm

• P , a point on an elliptic curve

– x, an element in IFqm

– y, an element in IFqm

y2 = x3 + ax + b (q > 3)
y2 + xy = x3 + ax2 + b (q = 2)

• p, a prime, the order of P

• pLen, the value of dlog2 pe
• qmLen, the value of dlog2 qme
In a valid PSEC public key, it holds that W = sP , where s is a PSEC private key in section

4.1.

Note :
A key derivation function KDF shall be one of the key derivation functions in Section 8.2.
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5 Cryptographic primitives

In this section, three cryptographic primitives are specified.

5.1 KGP-PSEC

KGP-PSEC(E,KDF, hLen) is defined as follows:

Input : E an elliptic curve parameter
KDF the choice from key derivation functions
hLen a nonnegative integer

Output : PK PSEC public key, (E, W,KDF, hLen)
s PSEC private key, a nonnegative integer, 0 ≤ s < p

Steps :

1. Generate a random integer s ∈ {0, · · · , p− 1}.
2. Let W = sP .

3. Output PK = (E,W,KDF, hLen) and s.

5.2 EP-PSEC

EP-PSEC(PK, α) is defined as follows:

Input : PK PSEC public key
α random value, a nonnegative integer, 0 ≤ α < p

Output : Q a point on E
C1 a point on E

Assumptions : public key PK is valid.
Steps :

1. Let Q = αW .

2. Let C1 = αP .

3. Output (Q, C1).

5.3 DP-PSEC

DP-PSEC(PK, C1, s) is defined as follows:

Input : PK PSEC public key
C1 a point on E
s PSEC private key, a nonnegative integer, 0 ≤ s < p

Output : Q a point on E
Assumptions : public key PK and private key s are valid.
Steps :

1. Let Q = sC1.

2. Output Q.
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6 Key encapsulation mechanisms

A key encapsulation mechanism works just like a public-key encryption scheme, except that
the encryption algorithm takes no input other than the recipient’s public key. Instead, the
encryption algorithm generates a pair (k, c0), where k is a octet string of some specified length,
and c0 is an encryption of k, that is, the decryption algorithm applied to c0 yields k.

One can always use a public-key encryption scheme for this purpose, generating a random
octet string, and then encrypting it under the recipient’s public key. However, as we shall see,
one can construct a key encapsulation scheme in other, more efficient, ways as well.

A key encapsulation mechanism PSEC-KEM consists of two operations.

• An encryption operation ES-PSEC-KEM-Encrypt(PK) that takes as input a public
key PK and outputs a key/ciphertext pair(k, c0).

• A decryption operation ES-PSEC-KEM-Decrypt(PK, s, c0) that takes as input a public
key PK, private key s and a ciphertext c0, and outputs a key k.

6.1 ES-PSEC-KEM

6.1.1 Encryption operation

ES-PSEC-KEM-Encrypt(PK) is defined as follows:

Input : PK PSEC public key
Output : c0 an octet string

k an octet string
Assumptions : public key PK is valid.
Steps :

1. Let (α, k, r) = EME-PSEC-KEM-A(PK) (see Section 7.1.1).

2. Let (Q,C1) = EP-PSEC(PK, α) (see Section 5.2).

3. Let c0 = EME-PSEC-KEM-B(PK, Q, C1, r) (see Section 7.1.2).

4. Output (c0, k).

6.1.2 Decryption operation

ES-PSEC-KEM-Decrypt(PK, s, c0) is defined as follows:

Input : PK PSEC public key
s PSEC private key, a nonnegative integer, 0 ≤ s < p
c0 an octet string

Output : k′ an octet string
Errors : “invalid”
Assumptions : public key PK and private key s are valid.
Steps :

1. Let (C1, c2, g) = EME-PSEC-KEM-C(PK, c0) (see Section 7.1.3).
If the decoding operation returns “invalid,” then assert “invalid” and stop.
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2. Let Q′ = DP-PSEC(PK, C1, s) (see Section 5.3).

3. Let (α′, k′)= EME-PSEC-KEM-D(PK, c2, g, Q′) (see Section 7.1.4).

4. Check C1 = DP-PSEC(PK,P, α′) (see Section 5.3). If it holds, output k′. Otherwise,
assert “invalid” and stop.

7 Encoding methods

This section specifies one encoding method for the key encapsulation mechanism.

7.1 EME-PSEC-KEM

7.1.1 Encoding operation EME-PSEC-KEM-A

EME-PSEC-KEM-A(PK) is defined as follows:

Option : keyLen a nonnegative integer
Input : PK PSEC public key
Output : α a nonnegative integer, 0 ≤ α < p

k an octet string
r an octet string

Steps :

1. Generate a random octet string r ∈ {0, · · · , 255}dhLen/8e.

2. Let H = OS2BSP(KDF (I2OSP(0, 32) || r, pLen + 128 + keyLen), pLen + 128 + keyLen).

3. Parse H = t || k′, where the bit length of t is pLen + 128, the bit length of k′ is keyLen.

4. Let α = BS2IP(t, pLen + 128) mod p.

5. Let k = BS2OSP(k′, keyLen).

6. Output (α, k, r).

7.1.2 Encoding operation EME-PSEC-KEM-B

EME-PSEC-KEM-B(PK, Q,C1, r) is defined as follows:

Option: R Compressed, Uncompressed or Hybrid
Input : PK PSEC public key

Q a point on E
C1 a point on E
r an octet string

Output : c0 an octet string
Steps :

1. Let c2 = r ⊕KDF (I2OSP(1, 32) ||ECP2OSP(C1, qmLen) ||ECP2OSP(Q, qmLen), hLen).

2. Let c0 = ECP2OSP(C1, qmLen) || c2.

3. Output c0.
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7.1.3 Decoding operation EME-PSEC-KEM-C

EME-PSEC-KEM-C(PK, c0) is defined as follows:

Option : R Compressed, Uncompressed or Hybrid
Input : PK PSEC public key

c0 an octet string
Output : C1 a point on E

c2 an octet string
g an octet string

Errors : “invalid”
Steps :

1. If the octet length of c0 is less than or equal to dhLen/8e, assert “invalid” and stop.

2. Parse c0 = g || c2, where the octet length of c2 is dhLen/8e.
3. Let C1 = OS2ECPP(g, qmLen).

If OS2ECPP asserts “invalid,” assert “invalid” and stop.

4. Output (C1, c2, g).

7.1.4 Decoding operation EME-PSEC-KEM-D

EME-PSEC-KEM-D(PK, c2, g, Q′) is defined as follows:

Option : keyLen a nonnegative integer
Input : PK PSEC public key

c2 an octet string
g an octet string
Q′ a point on E

Output : α′ a nonnegative integer, 0 ≤ α′ < p
k′ an octet string

Steps :

1. Let r′ = c2 ⊕KDF (I2OSP(1, 32) || g ||ECP2OSP(Q′, qmLen), hLen).

2. Let h′ = OS2BSP(KDF (I2OSP(0, 32) || r′, pLen + 128 + keyLen), pLen + 128 + keyLen).

3. Parse h′ = t′ || k′′, where the bit length of t′ is pLen + 128, the bit length of k′′ is keyLen.

4. Let α′ = BS2IP(t′, pLen + 128) mod p.

5. Let k′ = BS2OSP(k′′, keyLen).

6. Output (α′, k′).

8 Auxiliary techniques

This section gives several examples of the techniques that support the functions described in
this document.
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8.1 Hash functions

One hash function is recommended for the encoding methods in this document: SHA-1.

8.1.1 SHA-1

SHA-1 is defined in FIPS PUB 180-1 [1]. The output length of SHA-1 is 160 bits, and the
operation block size is 512 bits.

8.2 Key derivation functions

One mask generation function is recommended as a key derivation function for the encoding
methods in this document: MGF1 [3].

MGF1 is also called KDF1 in [5].

8.2.1 MGF1

MGF1 is a mask generation function based on a hash function.
MGF1(M, l) is defined as follows:

Options: Hash hash function
hashLen length in bits of the hash function output

Input: M seed from which mask is generated, an octet string
l intended bit length of the mask

Output: mask mask, an octet string of length
⌈

l

8

⌉
octets

Errors: “invalid”
Steps:

1. Let l0 be the bit length of M . If l0 + 32 is greater than the input limitation for the hash
function, assert “invalid” and stop.

2. Let cThreshold =
⌈

l

hashLen

⌉
.

3. Let M ′ be the empty octet string.

4. Let counter = 0.

(a) Convert the integer counter to an octet string of length 32 bits:

C = I2OSP(counter, 32).

(b) Concatenate M and C, and then apply the hash function to it to produce a hash
value:

H = Hash(M || C).

(c) Concatenate M ′ and H to the octet string M ′:

M ′ = M ′ || H.

(d) Let counter = counter + 1. If counter < cThreshold, then go back to step 4a.
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5. Let mask be the leftmost
⌈

l

8

⌉
octets of the octet string M ′:

M ′
0M

′
1 · · ·M ′

dl/8e−1.

6. Output mask.
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A Design principles

PSEC-KEM is the key encapsulation mechanism[5] (called PSEC-2’), which is improved from the
the encryption scheme PSEC-2, which is converted from the elliptic curve ElGamal encryption
function (encryption primitive) using the conversion in [4] in order to have high level security.

PSEC-KEM takes over advantages of elliptic curve encryption fuction (elliptic curve ElGamal
encryption function) which has various characteristics practically. PSEC-KEM is the encryption
scheme which is proved to have the highest security level(semantically secure against adaptive
chosen ciphertext attacks).

B Security requirements of parameters

Security requirements of PSEC-KEM parameters are the following:

pLen ≥ 160
hLen ≥ 128

C Recommendation values of parameters

Recommendation values of PSEC-KEM parameters are the following:

pLen = 160
KDF = MGF1 (SHA-1, hashLen = 160)
hLen = 160

R = Compressed
keyLen = 256
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D Fast implementation techniques

We have several implementation techniques for fast computations of PSEC-KEM:

• Using methods for ever-known fast elliptic curve arithmetic.

• Using the pre-computation results for private key, public key, and system parameters.

E Useful information for implementations

• See SECG about parameters and implementations of elliptic curve cryptosystems,
(http://www.secg.org/)

• We can implement PSEC-KEM to use some multi-precision library, such as GMP.
(http://www.swox.com/gmp/)

F Information about versions

There are four types of PSEC: PSEC-1, PSEC-2, PSEC-3, and PSEC-KEM. Among them,
PSEC-2 and PSEC-3 are hybrid encryption schemes. Although PSEC-KEM is a key encapsula-
tion mechanism, we can also utilize it as a hybrid encryption scheme like ISO draft [5] Section
2.7.

We have submitted PSEC specification to four standards, which described below:

(a) ISO draft (PSEC-KEM)[5]
Based on PSEC-2, PSEC-2’ which is specified to have a function of key agreement is
mentioned in current draft. We will change the name to PSEC-KEM. PSEC-KEM has no
compatibility with PSEC-2.

The recommended parameters has not decided yet.

(b) NESSIE draft
In our submission in 2000, the standard includes the primitive of PSEC-1,2,3 only, and
does not include any encoding methods.

We plan that we will withdraw PSEC-1,3, and re-submit PSEC-2 as what has a full
compatibility with PSEC-KEM in ISO draft. The recommended parameters will be the
same to those of CRYPTREC 2001.

(c) CRYPTREC 2000
In our submission in 2000, the standard includes the primitive of PSEC-1,2,3 only, and
does not include any encoding methods.

The recommended parameters are pLen ≥ 160, hLen ≥ 128.

(d) CRYPTREC 2001 We withdraw PSEC-1,3, and change the name of PSEC-2 in 2000 to
PSEC-KEM, and re-submit what is changed to have a full compatibility with PSEC-KEM
in ISO draft.

The recommended parameters are pLen ≥ 160, hLen ≥ 128.
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F.1 Reasons for changing recommended parameters

There is no change about recommended parameters.

F.2 User’s disadvantage without compatibility

As the encoding methods of PSEC-1, PSEC-2, PSEC-3, and PSEC-KEM are different, they are
all different as a scheme. Thus interoperability between them is not satisfied.
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