Copyright NTT and Mitsubishi Electric Corporation 2000

Camellia: A 128-Bit Block Cipher
Suitable for Multiple Platforms

Kazumaro Aokil Tetsuya Ichikawa? Masayuki Kandal
Mitsuru Matsuit Shiho Moriail Junko Nakajima? Toshio Tokitat

J[Nippon Telegraph and Telephone Corporation
1-1 Hikarinooka, Yokosuka, Kanagawa, 239-0847 Japan
{maro,kanda,shiho}@isl.ntt.co.jp

IMitsubishi Electric Corporation
5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan
{ichikawa,matsui, junel5,tokita}@iss.isl.melco.co.jp

September 26, 2000

Abstract. We present a new 128-bit block cipher called Camellia. Camellia sup-
ports 128-bit block size and 128-, 192-, and 256-bit key lengths, i.e. the same interface
specifications as the Advanced Encryption Standard (AES). Camellia was carefully
designed to withstand all known cryptanalytic attacks and even to have a sufficiently
large security leeway for use of the next 10-20 years. There are no hidden weakness
inserted by the designers. It was also designed to have suitability for both software
and hardware implementations and to cover all possible encryption applications that
range from low-cost smart cards to high-speed network systems. Compared to the
AES finalists, Camellia offers at least comparable encryption speed in software and
hardware. An optimized implementation of Camellia in assembly language can en-
crypt on a Pentium III (800MHz) at the rate of more than 276 Mbits per second,
which is much faster than the speed of an optimized DES implementation. In ad-
dition, a distinguishing feature is its small hardware design. The hardware design,
which includes key schedule, encryption and decryption, occupies approximately 11K
gates, which is the smallest among all existing 128-bit block ciphers as far as we know.
It perfectly meet current market requirements in wireless cards, for instance, where
low power consumption is a mandaroty condition.

Copyright NTT and Mitsubishi Electric Corporation 2000

Contents
1 Introduction
2 Design Rationale

2.1 F-function e e e e
2.2 P-function e e
2.3 8-bOXES . . . e e e
24 FL-and FL Mfunctions o o v i i
2.5 Key Schedule
Performance Figures

3.1 Software Performance
3.2 Hardware Performance e

Software Implementation Techniques

4.1 Setup
4.2 Data Randomization
4.3 General Guidelines e

Hardware Evaluations

5.1 Type 1: Fast Implementation
5.2 Type 2: Small Implementation,
5.3 Type 3: Small Implementation (Special Case for FPGA)
Security

6.1 Differential and Linear Cryptanalysis
6.2 Truncated Differential Cryptanalysis
6.3 Truncated Linear Cryptanalysis
6.4 Cryptanalysis with Impossible Differential
6.5 Boomerang Attack L
6.6 Higher Order Differential Attack
6.7 Interpolation Attack and Linear Sum Attack
6.8 Weak Keys o . o e
6.9 Equivalent Keys
6.10 Slide Attack L
6.11 Related-key Attack
6.12 Statistical Tests L
6.13 Implementation Attacks
6.14 Brute Force Attacks

Strengths and Advantages

Conclusion

W W w w W

ot Ot

10
10
11
17

19
19
20
21

24
24
25
27
27
27
28
28
29
29
29
29
30
30
31

33

34

Copyright NTT and Mitsubishi Electric Corporation 2000

1 Introduction

This paper presents a 128-bit block cipher called Camellia, which was jointly developed by NTT
and Mitsubishi Electric Corporation. Camellia supports 128-bit block size and 128-, 192-, and
256-bit key lengths, and so offers the same interface specifications as the Advanced Encryption
Standard (AES). The design goals of Camellia are as follows.

High level of security. The recent advances in cryptanalytic techniques are remarkable. A
quantitative evaluation of security against powerful cryptanalytic techniques such as differential
cryptanalysis [BS93] and linear cryptanalysis [M94] is considered to be essential in designing any
new block cipher. We evaluated the security of Camellia by utilizing state-of-art cryptanalytic
techniques. We have confirmed that Camellia has no differential and linear characteristics that
hold with probability more than 27128, Moreover, Camellia was designed to offer security against
other advanced cryptanalytic attacks including higher order differential attacks [K95, JK97],
interpolation attacks [JK97, A00], related-key attacks [B94, KSW96], truncated differential at-
tacks [K95, MT99], boomerang attacks [W99], and slide attacks [BW99, BW00].

Efficiency on multiple platforms. As cryptographic systems are needed in various appli-
cations, encryption algorithms that can be implemented efficiently on a wide range of platforms
are desirable, however, few 128-bit block ciphers are suitable for both software and hardware
implementation. Camellia was designed to offer excellent efficiency in software and hardware
implementations, including gate count for hardware design, memory requirements in smart card
implementations, as well as performance on multiple platforms.

Camellia consists of only 8-by-8-bit substitution tables (s-boxes) and logical operations that
can be efficiently implemented on a wide variety of platforms. Therefore, it can be implemented
efficiently in software, including the 8-bit processors used in low-end smart cards, 32-bit proces-
sors widely used in PCs, and 64-bit processors. Camellia doesn’t use 32-bit integer additions and
multiplications, which are extensively used in some software-oriented 128-bit block ciphers. Such
operations perform well on platforms providing a high degree of support, e.g., Pentium II/III or
Athlon, but not as well on others. These operations can cause a longer critical path and larger
hardware implementation requirements.

The s-boxes of Camellia are designed to minimize hardware size. The four s-boxes are affine
equivalent to the inversion function in the finite field GF(2%). Moreover, we reduce the inversion
function in GF(28) to a few GF(2*) arithmetic operations. It enables us to implement the
s-boxes by fewer gate counts.

The key schedule is very simple and shares part of its procedure with encryption. It supports
on-the-fly subkey generation and subkeys are computable in any order. The memory requirement
for generating subkeys is quite small; an efficient implementation requires about 32-byte RAM
for 128-bit keys and about 64-byte RAM for 192- and 256-bit keys.

Future developments. NTT and Mitsubishi Electric Corporation will propose Camellia in
response to the call for contributions from ISO/IEC JTC 1/SC 27, aiming at its being adopted
as an international standard. We will submit Camellia to NESSIE (New European Schemes for
Signature, Integrity, and Encryption) project as a strong cryptographic primitive.

Copyright NTT and Mitsubishi Electric Corporation 2000

Outline of the paper. This paper is organized as follows: Section 2 describes the rationale
behind Camellia’s design. Section 3 discusses the performance of Camellia. Section 4 contains
the techniques for software implementation. In Section 5 we discuss our hardware evaluations.
In Section 6 we evaluated Camellia’s strength against known attacks. We conclude in Section 7.

For the specification of Camellia, please see the separate document titled “Specification of
Camellia — a 128-bit Block Cipher.” We will follow the definitions and notation given in this
separate paper.

Copyright NTT and Mitsubishi Electric Corporation 2000

2 Design Rationale

2.1 F-function

The design strategy of the F-function of Camellia follows that of the F-function of E2 [KMAT98].
The main difference between E2 and Camellia is the adoption of the 1-round (conservative) SPN
(Substitution-Permutation Network), not the 2-round SPN, i.e. S-P-S. When the 1-round SPN
is used as the round function in a Feistel cipher, the theoretical evaluation of the upper bound
of differential and linear characteristic probability becomes more complicated, but the speed
under the same level of “real” security is expected to be improved. See Section 6 for detailed
discussions on security.

2.2 P-function

The design rationale of the P-function is similar to that of the P-function of E2. That is, for com-
putational efficiency, it should be represented using only bytewise exclusive-ORs and for security
against differential and linear cryptanalysis, its branch number should be optimal [KTM™99).
From among the linear transformations that satisfy these conditions, we chose one considering
highly efficient implementation on 32-processors [AU00| and high-end smart cards, as well as
8-bit processors.

2.3 s-boxes

As the s-boxes we adopted functions affine equivalent to the inversion function in GF(28) for
enhanced security and small hardware design.

It is well known that the smallest of the maximum differential probability of functions in
GF(2®) was proven to be 27%, and the smallest of the maximum linear probability of functions in
GF(2%) is conjectured to be 275. There is a function affine equivalent to the inversion function
in GF(28) that achieves the best known of the maximum differential and linear probabilities,
276, We choose this kind of functions as s-boxes. Moreover, the high degree of the Boolean
polynomial of every output bit of the s-boxes makes it difficult to attack Camellia by higher order
differential attacks. The two affine functions that are performed at the input and output of the
inversion function in GF(2®) complicates the expressions of the s-boxes in GF(2%), which makes
interpolation attacks ineffective. Making the four s-boxes different slightly improves security
against truncated differential cryptanalysis [MT99].

For small hardware design, the elements in GF(2®) can be represented as polynomials with
coefficients in the subfield GF(2%). In other words, we can implement the s-boxes by using a few
operations in the subfield GF(2*) [MIYY88]. Two affine functions at the input and output of
the inversion function in GF(2®) also play a role in complicating the expressions of the s-boxes
in GF(2%).

2.4 FL- and FL -functions

FL- and FL~!-functions are “inserted” between every 6 rounds of a Feistel network to provide
non-regularity across rounds. One of the goals for such a design is to thwart future unknown
attacks. It is one of merits of regular Feistel networks that encryption and decryption procedures

Copyright NTT and Mitsubishi Electric Corporation 2000

are the same except for the order of the subkeys. In Camellia, FL/FL~!-function layers are
inserted every 6 rounds, but this property is still preserved.

The design criteria of FL- and FL~!-functions are similar to those of the F'L-function of
MISTY [M97]. The difference between MISTY and Camellia is the addition of 1-bit rotation.
This is expected to make bytewise cryptanalysis harder, but it has no negative impact on
hardware size or speed. The design criteria are that these functions must be linear for any fixed
key and that their forms depend on key values. Since these functions are linear as long as the key
is fixed, they do not make the average differential and linear probabilities of the cipher higher.
Moreover, these functions are fast in both software and hardware since they are constructed by
logical operations such as AND, OR, XOR, and rotations.

2.5 Key Schedule

The design criteria of the key schedule are as follows.
1. It should be simple and share part of its procedure with encryption/decryption.

2. Subkey generation for 128-, 192- and 256-bit keys can be performed by using the same key
schedule (circuit). Moreover, the key schedule for 128-bit keys can be performed by using
a part of this circuit.

3. Key setup time should be shorter than encryption time.
In cases where large amounts of data are processed with a single secret key, the setup time
for key schedule may be unimportant. On the other hand, in applications in which the
key is changed frequently, key agility is a factor. One basic component of key agility is key
setup time.

4. It should support on-the-fly subkey generation.

5. On-the-fly subkey generation should be computable in the same way in both encryption
and decryption.

Some ciphers have separate key schedules for encryption and decryption. In other
ciphers, e.g., Rijndael [DR98] or Serpent [ABK98|, subkeys are computable in the forward
direction only and require unwinding for decryption.

6. There should be no equivalent keys.
7. There should be no related-key attacks or slide attacks.

Criteria 1 and 2 mainly address small hardware requirements, Criteria 3, 4, and 5 are ad-
vantageous in terms of practical applications, and Criteria 6 and 7 are for security.

The memory requirement for generating subkeys is quite small. An efficient implementation
of Camellia for 128-bit keys requires 16 bytes (=128 bits) for the original secret key, K, and 16
bytes (=128 bits) for the intermediate key, K 4. Thus the required memory is 32 bytes. Similarly,
an efficient implementation of Camellia for 192- and 256-bit keys needs only 64 bytes.

Copyright NTT and Mitsubishi Electric Corporation 2000

3 Performance Figures

3.1 Software Performance

Table 1 summarizes the current software performance of Camellia. The table shows that Camel-
lia can be efficiently implemented on low-end smart cards, and 32-bit and 64-bit processors. We
use the abbreviations M (mega) for 10° and m (milli) for 1072 in the table.

Note that the table only shows “point” data. This means that we can implement a program
that requires less memory but works less efficiently. Future results may show “continuous” data.

Optimization level. When we coded programs, we tried to use the techniques described in
Section 4. However, since we did not have enough time to try all combinations of the techniques,
our numbers are probably not the best.

We think that C implementation is not important, since we can normally use assembly
language instead if it is available. Moreover, optimizing a C program means reverse engineering
the C compiler, since we often perform the following cycle when optimizing C code.

Step 1: Program or modify C code.

Step 2: Produce assembly code using a C compiler.
Step 3: Check the assembly code and go to Step 1 if not appropriate.

Step 4: Measure timing, and go to Step 1 if not satisfied.

When optimizing a program, we try to predict what assembly code the compiler will produce
from the C code. We think that this approach is inefficient and so did not try to optimize C
code.

How to measure speed. It is difficult to measure speed on modern processors since there
are many elements, for example, status of cache, that are beyond the users control and that
influence speed. We decided to measure speed under the following conditions and assumptions:

e All codes and data are correctly aligned.
e Input and output texts and codes are preloaded to the first level cache.
e Branch predictions are correct.

e Setup function (except for on-the-fly implementations) generates subkey-dependent con-
stants from the secret key, and the constants are used by encryption or decryption function.

e Encryption (decryption) function except for on-the-fly implementations can encrypt (de-
crypt) an integral number of blocks.

e We measured the speed many times, and chose the best result to eliminate cache hit misses
and other uncontrollable factors.

e We averaged the speed numbers for large block encryption, but the values include all
overheads including loop and function calls.

Copyright NTT and Mitsubishi Electric Corporation 2000

Table 1: Camellia software performance

Key Timing data Dynamic Code size | Table

Processor |Language|length| Setup® Enc.? memory*® [bytes] size
[bits] |[cycles] (?) [cycles®] (f) [Setup® Enc.?|Setup® Enc.|[bytes]

P ITIY |Assembly| 128 |160 (4.41\/[) 371 (2421\/[) 28 36 | 1,046 2,150| 8,224

192 (222 (3.2M) 494 (181M) | 28 36 |1,469 3,323|8,240

256 (226 (3.1M) 494 (181M) | 28 36 | 1,485 3,3238,240

PII" [ANSIC?| 128 |263 (LIM) 577 (67M) | 44 64 | 1,600 3,733| 4,128

Alphal |Assembly| 128 |118 (5.7M) 339 (252M) | 48 48 | 1,132 3,076|16,528
192 (176 (3.7M) 445 (192M) | 48 48 | 1,668 4,000/16,528

256 (176 (3.7M) 445 (192M) 48 48 | 1,676 4,000({16,528

128 |158 (4.2M) 326 (262M) | 48 48 | 1,600 2,928|16,512

8051 [Assembly| 128 | 0(0) 10,217 (10om)| 0 32]| 0 702 | 288
M32Rx/D'[Assembly| 128 [642 (1.6M) 1,236 (10.4M)] 44 44 | 1,392 3,164] 4,128

“Key schedule may be included.

*The data given in this column are the same as those for decryption, since Camellia is symmetric between
encryption and decryption.

‘Dynamically used memory in bytes including stack area, excluding text and key area, which is usually
located in RAM.

4Setup performance given in seconds for 8051, and keys/s for other processors.

¢Performance given in cycles per block. The efficiency in cycles per byte is obtained by dividing each data
by 16.

fPerformance given in seconds for 8051, and b/s for other processors.

9IBM PC/AT compatible PC, Intel Pentium III (700MHz), 256 KB on-die L2 cache, FreeBSD 4.0R, 128MB
main memory.

"IBM PC/AT compatible PC, Intel Pentium IT (300MHz), 512KB L2 cache, MS-Windows 95, 160MB main
memory.

“Microsoft Visual C++ 6 with the optimization options /G6 /Zp16 /ML /0x /Ob2.

JCOMPAQ Professional Workstation XP1000, Alpha 21264 (667MHz), Compaq Tru64 UNIX 4.0F, 2GB
main memory.

*Intel 8051 (12MHz; 1 cycle = 12 oscillator periods) simulator on Unix.

"Mitsubishi 32-bit microcomputer M32Rx/D (100MHz) on MSA2310 evaluation board.

Copyright NTT and Mitsubishi Electric Corporation 2000

3.2 Hardware Performance

Tables 4 through 7 summarize the hardware performance of 128bit-key Camellia on ASIC (Ap-
plication Specific Integrated Circuit) and FPGA (Field Programmable Gate Array). Table 2
shows the environment of our hardware design and evaluation.

Table 2: Hardware evaluation environment (ASIC, FPGA)
Language ||(ASIC, FPGA) Verilog-HDL
Simulator ||(ASIC, FPGA) Verilog-XL
(ASIC) Mitsubishi Electric 0.35¢ CMOS ASIC library
(FPGA) Xilinx XC4000XL series
(
(

Design library

Login synthesis||(ASIC) Design Compiler version 1998.08

FPGA) Synplify version 5.3.1 and ALLIANCE version 2.1i

We evaluated Type 1 through Type 3 logic. Table 3 shows the top priorities of the logic types.

Table 3: Hardware design policies (outline)
‘ Type H Top priority ‘Outline of logic‘
Type 1||Fast implementation from the viewpoint of Enc(Dec) speed| Figure 1
Type 2||Small implementation from the viewpoint of total logic size Figure 2
Type 3 Small implementation (special case for FPGA) Figure 3

The details of each type are described in Section 5.

Copyright NTT and Mitsubishi Electric Corporation 2000

Table 4: Hardware performance (Type 1: Fast implementation [ASIC(0.35¢ CMOS)])

Algorithm ArealGate] Key setup| Critical-| Throughput
name |Enc.&Dec.® Key expan.’ Total logic¢| time[ns] |path[ns]¢| [Mb/s]
DES 42,204 12,201 54,405 — 55.11 1161.31

Triple-DES 124,888 23207 128,147 — 157.09 407.40

MARS 690,654 2,245,096 2,935,754] 1740.99] 567.49 225.55
RC6 741,641 901,382 1,643,037| 2112.26| 627.57 203.96
Rijndael 518,508 93,708 612,834 57.39] 65.64 1950.03
Serpent 298,533 205,096 503,770 114.07| 137.40 931.58
Twofish 200,165 231,682 431,857 16.38] 324.80 394.08

| Camellia | 216,911 55,907 272,819 24.36] 109.35] 1170.55

“including output registers

bincluding subkey registers

“including buffers for fan-out adjustment
ICritical path of data encryption (or decryption)

Table 5: Hardware performance (Type 2: Small implementation [ASIC(0.35¢ CMOS)])

Algorithm Area|Gate] Key setup| Critical-| Throughput
name |Enc.&Dec.? Key sched.” Total logic ¢| time[ns] |path[ns]¢| [Mb/s]
| Camellia | 6,367 4,979 11,350 110.2] 27.67] 220.28]

%including output registers and data selector

bincluding subkey registers and a part of key expansion logic
“including buffers for fan-out adjustment

dCritical path of data encryption (or decryption)

Table 6: Hardware performance (Type 2: Small implementation [FPGA(XC4000XL series)])

Algorithm|Area|CLBs]|| Critical- | Throughput
name Total |path[ns]?| [Mb/s]

| Camellia | 1,206 [78.815 | 7734 |

“Critical path of data encryption (or decryption)

Copyright NTT and Mitsubishi Electric Corporation 2000

Table 7: Hardware performance (Type 3: Small implementation [FPGA(XC4000XL series)])

Algorithm|Area|CLBs]|| Critical- |Throughput
name Total |path[ns]?| [Mb/s]

| Camellia | 874 | 49.957 | 122,01 |

“Critical path of data encryption (or decryption)

Copyright NTT and Mitsubishi Electric Corporation 2000

4 Software Implementation Techniques

This section describes how to implement Camellia efficiently in software. In most cases, an
implementation can be divided into two parts: setup including key schedule and data random-
ization, that is, encryption or decryption. We first describe how to optimize the setup code, and
then describe how to optimize the data randomization code.

This section describes specific techniques for 8-, 32-; or 64-bit processors. However, a tech-
nique for 8-bit processors may be applicable to 32- or 64-bit processors and a technique for 32-bit
processors may be applicable to 64-bit processors. Other word sizes may need to be considered.

We assume that you first implement Camellia using the specification as it is. This section
will optimize the resulting code.

Note that in this section “word” means the natural size of the target processor. For example,
the words of TA-32 without MMX technology, IA-32 with MMX technology and Alpha are 32-,
64-, and 64-bits long respectively.

4.1 Setup

4.1.1 Store All Subkeys

Store all subkeys into memory once you generate them if you have sufficient memory, and use
the stored subkeys for data randomization.

4.1.2 Subkey Generation Order

You do not have to compute subkeys in order. For example, when you compute subkeys for a
128-bit key, first compute the subkeys that only depend on K, and then compute subkeys that
only depend on K 4. This reduces the number of registers or memory for storing K 4.

4.1.3 XOR Cancellation Property in Key Schedule

The key schedule of Camellia is based on the Feistel structure. Between the 2nd round and the
3rd round, K is XORed to an intermediate value. This structure causes cancellations of K7, .
More precisely, the input of the 3rd round can be computed by the following equations.

(right half) = F(Kpp,%1) .
(left half) = F(KLR o) (I’lght half), 22) for 128-bit keys

(I‘lght half) = KRR@F(KLL EBKRL’EI)]

(left half) = Kpp® F(Kpg @ (right half), $5) for 192- and 256-bit keys

Using the above equations, we can eliminate 3 and 2 XORs in L for 128- and 192/256-bit keys,
respectively, compared to the straightforward implementation of the specification.
4.1.4 Rotation Bits for K;, Kr, K4, and Kp

You do not need to keep K, Kgr, K4, and Kp, but you should keep their rotated values when
generating subkeys. You can generate subkeys by rotating the kept values by a sum of integral
multiples of 16 + 1 bits.

10

Copyright NTT and Mitsubishi Electric Corporation 2000

4.1.5 kl; and klg Generation from kq; and ki

For 192- and 256-bit keys, you can use word-oriented rotation to generate (kls, klg) from (k11, k12),
since (kls, klg) equals (k11, k12)<<32. This saves a few instructions compared to general rotation.

4.1.6 On-the-fly Subkey Generation

You can generate subkeys on-the-fly. All subkeys are one of the rotated values of Ky, Kg,
K4, and Kp. Thus, you first generate K, K, K4, and Kpg, and then rotate them to get the
subkeys. Refer to Section 4.1.4 for the rotated numbers of bits for K, Kr, K4, and Kp.

4.1.7 128-bit key and 192/256-bit key
If your code does not need to use key sizes larger than 128 bits, you do not need to generate
Kp. That is, you can omit the computations for the last two F-functions.

4.1.8 How to Rotate an Element in Q

8-bit processor. As stated in Section 4.1.4, the amount of rotation in bits is a sum of integral
multiples of 16 + 1. Thus, you can rotate an element in Q by 16 & 1 bits by rotating 1-bit left
or right followed by a 2-byte move.

32-bit processor. Consider the use of a double precision shift instruction: shrd or shld if
you are programming on TA-32.

4.1.9 F-function

Key schedule includes F-functions, but the main usage of the F-function is for data randomiza-
tion. Refer to Section 4.2.

4.1.10 Keyed Functions

Camellia has three keyed functions: bitwise XOR, bitwise OR, and bitwise AND. Consider the
use of a self-modifying code, if possible.

4.2 Data Randomization
4.2.1 Endian Conversion

Camellia prefers big endian. Thus, the code for little endian processors needs additional code
for endian conversions.

The most straightforward implementation converts the endian when loading a register from
memory and storing a register to memory. Only FL- and FL~!-functions are endian dependent.
More precisely, only the 1-bit rotation in FL- or F L~ !-function is endian dependent. This means
that you can convert endians just before or just after the 1-bit rotation with the appropriate
subkey generation scheme. A combination of computing endian conversion and 1-bit rotation
may increase the performance of Camellia. Details are described in Section 4.2.2.

11

Copyright NTT and Mitsubishi Electric Corporation 2000

Some processors have a special instruction for endian conversion. For example, IA-32 (after
80486) has bswap instruction. Use these instructions. However, do not use the byte swap
technique described in [C98, Appendix A]. The technique reduces the code size, but it is not
fast, since the memory load and store instruction incurs long latency.

As described above, the endian problem only effects the 1-bit rotation of a 32-bit word.
Thus, we do not need full 64-bit word endian conversion.

The following are general methods to realize endian conversion for 32-bit register z. In
the following techniques, you can use either U or ¢ instead of + in the equations, and you can
switch the computational order between shifts including rotations and ANDs with an appropriate
conversion of masked constants.

Straightforward.
T (r <94) + ((x N0x££00) <g) + ((z >5) N 0xE£00) + (2 >94)

The technique has high parallelism.

Minimum operations without rotation.

(a: <<16) + (:L‘ >>16)

T <
z < ((xNO0xff00ff) <g) + ((@ >g) N 0xff0O0ff)

Using rotations.

z + ((z N O0x££00££)>5) + ((r<<s) N Ox££00Lf)

Using SSE. New Intel Pentium family processors including Pentium IIT have a very effective
instruction for reordering data, which is called pshufw [I99]. 5 instructions including pshufw
are sufficient to convert endian for 64-bit data.

4.2.2 1-bit Rotation in Little Endian Interpretation

As described in Section 4.2.1, we do not need endian conversion when loading and storing texts
if we can efficiently implement 1-bit rotation in FL- and FL~!-functions.

Assuming x to be a 32-bit register that contains little endian data to be rotated by 1-bit, we
can compute 1-bit rotation by the following equation.

x < ((2z) N Oxfefefefe) + ((z>>>15) N Oxfefefefe) (1)

Of course, this technique requires an appropriate changes to subkey setup and other functions.
Note that + in Equation (1) can be replaced with U or @, and computing 2z can be done by
<1, <4 or addition with x itself, and you can switch the computational order between shifts
including rotations and ANDs with an appropriate conversion of masked constants.
Confirm whether your processor has ANDNOT instruction, such as pandn in [A-32 and bic
in Alpha. In this case, you do not need to prepare the constant, Oxfefefefe.

12

Copyright NTT and Mitsubishi Electric Corporation 2000

4.2.3 Whitening

The key additions kws and kw4 can be combined into other keyed operations using the following
equations.

(zok)oy = (z0y) Dk,

zokel = za(kal),
zok)nl = (nh)aknl), (2)
(zok)<; = (z<1)® (k<y),

(xok)Ul = (zUl)a (kNI),

where x, y, k, | are bit strings. Adjust subkeys at setup to eliminate 2 XORs in L.

4.2.4 Key XOR

Using Equations (2), you can move key XORs to any place if the movement does not go through
the S-function. For example, changing F-function computation P(S(X @ k)) to P(S(X)) @ k'
may improve instruction scheduling.

4.2.5 S-function

s1 is defined by the arithmetics in GF(2®). However, do not compute GF(28) arithmetics; instead
precompute and hard-code a table in your program, see Table 4 in the specification.

We strongly suggest that you also precompute and hard-code so, s3, and s4 tables in addition
to s1, if you have sufficient memory and 8-bit rotation is expensive. If you do not have sufficient
memory, the data of so, s3, and s4 can be generated from the table for s; using one rotation
(See Section 4.5 in the specification).

If you have sufficient memory, and cost of table lookup is heavy, as is true for the current Java
virtual machines, consider the use of a two s-box combined table, for example (s1(y1), s2(y2))-

4.2.6 P-function

32-bit processor. Let (Zr,Zr) = ((21, 22, 23, 24), (25, 26, 27, 28)) be the input of P-function
and (77, Z%) = ((21, 25, 25, 24), (25, 26, 27, 23)) be the output of P-function.
From Figure 5 in the specification, you can see that P-function can be computed as follows.

7, + Zp® (Zp<s)
Zr + ZR@(ZL<<<16)
7y, <+ Zp® (Zp>>3)
Zr + ZR@(ZL>>>8)
Zy <+ Zg
Zn + 7L

13

Copyright NTT and Mitsubishi Electric Corporation 2000

The critical path of this computation is long. We can modify the computation as follows.

Ir + Zpkg
21, — Zp®Zr Zp + Ipkg
21, — Zp>>g Zrp — Zp®Zp
Z, < Z®Zr Zp + IpKig
21, — ¥y Zp < Zp®Zp
Zi < ZR Z}% — 7y

The critical path of the above computation is decreased. It seems that the technique requires one
additional rotation, however, you can probably combine the first step of the above computation
and S-function without any additional cost.

8-bit processor (orthogonal mnemonics). If the instruction in your processor can XOR
any combination of registers and has sufficient registers, you can compute P-function by using
just 16 XORs using Figure 5 in the specification.

8-bit processor (accumulator based). If your processor is accumulator based, minimizing
the number of XORs is not always a good idea, since the computation may require register load
from memory and store into memory many times. The following computation is optimized for
an accumulator based processor.

21D 24D 25D 26 D 27
25D 21 D 2o P 23
24D 20D 27 D 23
2 B2 Do D2y
2 D2 Dz D2y
26® 21D 23 D 24
2 D2y B 25 D 26

TtrT T T TT

2t ® 20D 23 D 24

When indexing 2, costs many operations, the following is useful.

o 21 D2 D23 D2 D25 D2 D2 D2y
21 oD 2D zs
zé oD z3D zg
PA oD 24D 27
) 0Dz Dzg

oD 23D 24 D 25
0D 2z1D2sD 26
oD 21D 2Dz
0Dz ® 23D g

&
TrTrT T T T

14

Copyright NTT and Mitsubishi Electric Corporation 2000

4.2.7 Substitution and Permutation
This section describes how to efficiently compute P o S compared to independently computing

S and P.

64-bit processor. If your processor has a sufficiently large first level cache, use the technique
described in [RDP96]. The technique prepares the following tables defined by Equations (3).

SPl(yl) = (51(y1)7 31(y1)7 31(y1)7 0, 51(3/1), 0, 0, Sl(yl))
SP?(yQ) - (0, 52(3/2)? 52(3/2)? 52(3/2)’ 32(342)’ 32(342)’ 0, 0)
SP3(ys) = (s3(y3), 0, s3(y3), s3(y3), 0, s3(y3), s3(y3), 0)
SP4(y4) - (34(y4)? 54(3/4)? 0, 54(3/4)’ 0, 0, 34(344)? 54(3/4)) (3)
SPs(ys) = (0, s2(y5), s2(ys), s2(ys), 0, 52(ys5), s2(ys), s2(v5))
SPs(ys) = (s3(y6), 0, s3(y6), s3(v6), s3(¥s), 0, s3(y6) s3(¥s))
SPr(yr) = (sa(yr), salyr), 0, sa(yr), sa(yr), sa(y7), 0, sa(y7))
SPs(ys) (s1(ys), s1(ys), s1(ys), 0, s1(ys), s1(ys), s1(ys), 0)
Next, compute the following equation:
8
(217 '257 32/37 '24/17 Zé’ Zé’ ZI7’ Zé) — @ SP%(:’JZ)
i=1

This technique requires the following operations.

of table lookups 8
of XORs 7
Size of table (KB) 16

If the first cache of the target processor is moderately large, replace a few of the tables
defined by Equations (3) with the tables below.

SP(y) = (s51(y), s1(¥); 51(), s1(y), s1(y), s1(y), s1(y), s1())
SPs(y) = (s2(y), s2(v), s2(y), 52(y), s2(v), s2(y), s2(v), s2(y)) ()
SPy(y) = (s3(v), s3(y), 53(y), s3(v), 53(y), s3(y), s3(y), s3(y))
SPs(y) = (s4(y), sa(y), s4(y), sa(y), sa(y), s4(y), s4(y), s4(y))

Then, mask the necessary byte positions. This technique requires the following operations if
you use just tables of Equations (4).

of table lookups
of XORs
of ANDs
Size of table (KB)

oo 00 3

When implementing this technique on Alpha architecture [C98], and if the number of registers
is insufficient for storing constants for masking operation, use zap or zapnot instructions.

15

Copyright NTT and Mitsubishi Electric Corporation 2000

If your processor can efficiently copy half bits of a register to the other half, for exam-
ple, punpckldq/punpckhdq or pshufw instructions in TA-32 [I199] which are realized after Pen-
tium with MMX technology and Pentium III, respectively, prepare SP;, SP,, SP;, and SP;
defined in Equations (3). Then, compute the following equation:

4 8

(zi?zé?zé?zz/b Zéa Zé’ ZI7’ Zé) - @Spi(yi) ©® V(@ SP2'—4(yi))a
=1 =5

where v denotes the operation that copies the first 4 bytes to the last 4 bytes. This technique
requires the following operations.

of table lookups 8
of XORs 7
of vs 1
Size of table (KB) 8

32-bit processor. [AU00] shows efficient implementations of Camellia-type substitution and
permutation networks. One of the techniques prepares the following tables defined by Equa-
tions (5):

SPiio(y) = (s1(y), s1(y), s1(y), 0)
SPo222(y) = (0, s2(y), s2(y), s2(y)) (5)
SP333(y) = (s3(y), 0, s3(y), s3(y))
SPuoa(y) = (sa(y), sa(y), 0, s4(y))

Then, compute as follows:

D <« SPi110(ys) ® SPo222(ys) ® SP3033(ys) ® SPasoa(yr)
U < SPiio(y1) ® SPo222(y2) ® SP3033(y3) ® SPasoa(ya)
(zi,zé,zé,zfl) — DU
(Zéazéazéazé) «— (ziazéazéazzll) ¥ (U>>>8)

This technique requires the following operations.

of table lookups 8
of XORs 8
of rotations 1
Size of table (KB) 4

[AU00] also shows an implementation that is suitable for a processor in which rotation is very
costly. The technique prepares the following tables in addition to tables defined by Equations (5):

S Pioo1 (y) = (Sl(y)’ 0, 0, Sl(y))
SPaoo(y) = (s2(y), s2(y), 0, 0)
S Po330(y) (0, s3(v), s3(y), 0)
SPooas(y) = (0, 0, s4(y), s4(y))

16

Copyright NTT and Mitsubishi Electric Corporation 2000

Then, compute as follows:

D < SPi110(ys) © SPo222(ys5) © SPs033(y6) © SPuaoa(yr)
(21,2, 25,24) < D@ SPi110(y1) ® SPo22(y2) SPs033(y3) & SPuaoa(ys)
(25, 26, 28, 28) < D @& SPioo1(y1) ® SPa200(y2) ® SPosso(ys) ® SPoosa(ys)

This technique requires the following operations.

of table lookups 12
of XORs 11
Size of table (KB) 8

4.2.8 Making Indices for s-box

You can make an index for s-box by simply using shifts and ANDs. However, several processors
have special instructions for making an index, for example, movzx in IA-32 [I199] and extbl in
Alpha [C98].

movzx is a fast operation in P6, but it can be used only for the two least significant bytes.
A straightforward implementation uses eax, ebx, ecx, and edx registers for storing (L,, R,),
and 2 rotations are used for making indices; 2 rotations are used for recovering byte order in
the registers every round. However, you can remove 2 rotations for recovering byte order every
round if you prepare rotated tables. Note that the byte order in registers returns to a natural
order every 4 rounds.

4.3 General Guidelines

This section describes general guidelines. The guidelines are useful to optimize Camellia as well
as other block ciphers. Please refer to the optimization manuals for each processor.

Avoid misaligned data accesses. Almost all processors penalize misaligned data access.
Align data to the word boundary.

Avoid partial data accesses. Most processors have a function to access a smaller part than
word size. However, this function may cause a penalty. Do not access partial data, even
if you do not need full size of word and you have sufficient memory.

Be careful of the size of the cache. If the program or its data exceeds the size of the cache,
the speed of the program will significantly decrease. Loop unrolling and table expansion
are good techniques to speed up the program, but do not exceed the size of the cache.

Use intrinsic functions. Several compilers support intrinsic functions. For example, when
you use Microsoft Visual C++ version 6 compiler on TA-32, and declare “#pragma
intrinsic(drotl)” and use “_lrotl”, the compiler generates rotation instructions in
assembly language. Refer to the manual of the compiler that you use for details.

Measuring precise speeds is difficult. The running time of your code depends on many
factors: cache hit misses, OS interrupts, and so on. Furthermore, the cryptographic

17

Copyright NTT and Mitsubishi Electric Corporation 2000

properties, for example, the number of blocks to be encrypted, also effect the running
time.

A few processors have an instruction to get the time stamp. For example, TA-32 (after
Pentium) has rdtsc [I99] and Alpha has rpcc [C98]. It is a good idea to use the time
stamp counter for measuring speeds, but you should not directly apply these instructions
to out-of-order architectures such as P6 and EV6.

If you want to measure speed precisely, consult good guidebooks. For example, if you
use Pentium family processors, refer to [F00].

18

Copyright NTT and Mitsubishi Electric Corporation 2000

5 Hardware Evaluations

In Section 3, we showed evaluation results of hardware implementations (ASIC, FPGA) for
Camellia with 128-bit keys. In this Section, we describe the design policies of the three types of
logic evaluated in Section 3. The details of each type are described below.

5.1 Type 1: Fast Implementation

In Type 1, we evaluate the hardware implementation (ASIC) where the goal is to achieve the
fastest encryption and decryption speed with no consideration of logic size. Figure 1 outlines
the Type 1 logic. Table 8 shows the basic Type 1 components.

Plaintext / Ciphertext

c
A=l
g
iz ! | :

() : A2)
% = Encryption =
[%‘ ! and x Key Expansion |, g
ED : Decryption & L ogic
85 1 Logic =

1

S Vo f e —m — — — — - - - - - >
&)

Critical Path of Key Expansion

Ciphertext / Plaintext

Figure 1: Outline of Type 1 (ASIC)

Table 8: The basic Type 1 components

Encryption and |Data randomizing logic for encryption and decryption,
decryption logic |which consists of combinational logic.
Output register |Register for the encryption (decryption) data.

Key expansion logic|Logic in which subkeys are generated from key,

which consists of combinational logic.

Subkey register |Register for the output data of key expansion logic.

The design policies of these basic components are listed below.
1. “Encryption and decryption logic” and “Key expansion logic”

(a) Loop architecture is not introduced.

19

Copyright NTT and Mitsubishi Electric Corporation 2000

(b) Pipeline architecture is not introduced.

(c) Substitution tables (s-boxes) are designed by logic synthesis tool.
Note that other encryption algorithms (AES finalists, DES and Triple-DES) are evaluated
in Section 3, and some of them use arithmetic operations (addition, multiplication, etc).

For arithmetic operations, we use faster ones in the library of Synopsys Design Ware Basic
Library[Synopsys (1998)].

2. “Output register” and “Subkey register”

(a) The size of Output register is one block (=128 bits).
(b) The size of Subkey register is the total length of all subkeys in the algorithm.

Under the above design policies, we evaluated Camellia and other algorithms on ASIC de-
vices. The results are summarized in Table 4 in Section 3. “Throughput” is defined as follows:

Block size(128 [bits])

Th hput|b/s| = .
roughput[b/s| Critical path of data encryption(decryption)[sec]

5.2 Type 2: Small Implementation

In Type 2, we evaluate the hardware implementations (ASIC, FPGA) with the goal of achieving
the smallest logic in encryption (and decryption). Figure 2 outlines the Type 2 logic. Table 9
shows the basic Type 2 components.

One Round of
Encryption and Decryption
Logic
with sharing a part of
(or dl of) Key Expansion Logic

c
Key o
Paintext / Ciphertext l A %
Q.
— "
l Key ScheduleLogic | ' &
Data Selector | ________ and : >
e apart of , ©
' v Key Expansion Logic| §
|
13
v s
&

Critical Path of Data Encryption
(or Decryption)

€« ——————— -

Ciph