
Analysis of Camellia

Lars R. Knudsen

April 28, 2000

1 Analysis of Camellia

The best attack we have found on Camellia is an attack based on truncated
differentials. The attack is similar to an attack presented recently on the block
cipher E2 in [2]. The differential analysis can be found in Sections 1.1 and 1.2.
Also, we analyse the key-schedule of Camellia in Section 1.3 and comment on
the S-boxes in Section 1.4 and on some other attacks in Section 1.5. We shall
use some definitions and terms from the designers and refer to [3] for further
definitions. In the appendix we give a compressed overview of the state-of-the-
art of block cipher cryptanalysis.

1.1 Differential and Linear Cryptanalysis

In this section we consider conventional differential and linear cryptanalysis.
The maximum probability of a differential through one S-box is 2−6. The max-
imum bias of a linear approximation through one S-box is 2−4. The question is
how we can use these in combination to obtain differentials and linear approxi-
mations for several or many rounds. One possible tool to make such estimates is
to estimate or measure the total number of active S-boxes in an analysis. For a
few rounds of Camellia it is easy to find the minimum number of active S-boxes.
For differential attacks with equal inputs to the round function in one round
the number of active S-boxes is zero, and similarly for linear approximations
the minimum number of active S-boxes is zero. However, when moving to more
rounds, the number of active S-boxes will increase. It follows from a simple in-
spection of the structure in the round function of Camellia that for two rounds
of Camellia the minimum total number of active S-boxes will be one, for three
rounds the minimum total number of active S-boxes will be six. This number
will increase rapidly for more than 3 rounds. A conservative estimate for both
differential and linear attacks would be to expect at least 3 active S-boxes in
each round on the average. This would mean a probability of 2−18 per round for
differential attacks and a bias of 2−10 per round for linear attack. Iterated to
six rounds this gives a probability of 2−108 for differential attacks and a bias of
2−55 for linear attacks. All in all, in an attack this would mean a requirement
of 2108 pairs of chosen plaintexts for the differential attack, and 2110 known
plaintexts for the linear attack. These estimates are very conservative. First
of all, in the estimates we have used the maximum probabilities and biases
for every active S-box. Furthermore we have estimated a maximum number of

1

2

three active S-boxes for every round, which may be quite optimistic. For both
attacks, there is a sufficient level of security for all versions of Camellia.

1.2 Truncated Differentials

In this section we report on several truncated differentials for Camellia. We use
the following notation. Let (x1 · · · xs) denote a vector of s bytes. With s = 16
this will be a plaintext block or a ciphertext block after i rounds of encryption.
With s = 8 this will typically be the input or the output of the function F .
The difference between two s-byte vectors, s ∈ {8, 16} will be the exclusive-or
of the individual bytes in the vectors. Also, we let

x = (x1 · · · x8)
F
→ (y1 · · · y8) = y,

denote that a difference of x in two input vectors to F can result in a difference
of y in the two output vectors with probability p. A one-round differential will
be denoted

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

x1 x2 x3 x4 x5 x6 x7 x8
F
→ y1 y2 y3 y4 y5 y6 y7 y8

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16

Here x1, . . . , x16 denote the difference in the two 128-bit texts before the round,
and z1, . . . , z16 denote the difference in the texts after the round. Also, zj+8 = xj

for j = 1, . . . , 8, and zi = xi+8 ⊕ yi for i = 1, . . . , 8.
One of the best ways to push information about differences through sev-

eral rounds in an iterated cipher is to use what is called iterative differentials.
These are differentials which can be concatenated with themselves any num-
ber of times. For Camellia we have found the following 1-round differential of
probability 2−16

x1 0 x3 0 x5 0 x7 0 x9 0 x11 0 x13 0 x15 0

x1 0 x3 0 x5 0 x7 0
F
→ y1 0 y3 0 y3 0 y1 0

z1 0 z3 0 z5 0 z7 0 z9 0 z11 0 z13 0 z15 0

where it is assumed that xi 6= 0 for i ∈ {1, 3, 5, 7}. The differential is iterative,
which means that it can be concatenated with itself r times, yielding an r-
round differential of probability 2−16r. The probability is calculated as follows.
A difference x5 6= 0 in two input bytes to the S-box 4 results in some difference
y3, and a difference x7 6= 0 in two input bytes to the S-box 2 results in some
difference y1. Then with an average probability of 2−8 a difference x1 6= 0 in
two input bytes to the S-box 1 results in the difference y1 ⊕ y3. Similarly, with
an average probability of 2−8 a difference x3 6= 0 in two input bytes to the
S-box 3 results in the difference y1 ⊕ y3. Both these events will happen with
probability 2−16. The mixing of bytes at the end of the round function results
in the difference indicated above.

In [2] similar differentials are exploited in cryptanalytic attacks on the block
cipher E2. As noted in [2] the above individual probabilities are in fact 1

255

3

rather than 2−8, however since we are going to iterate this differential there
will be a dependency between the different rounds and the exact probability
will be hard to calculate. However, it seems plausible in the analysis of Camel-
lia to assume independence between the rounds, just as the authors assumed
in the analysis of E2 [2]. Therefore, for convenience, we shall use 2−8 as an
approximation of the individual probabilities.

This differential iterated to five rounds looks as follows.

x1 0 x3 0 x5 0 x7 0 x9 0 x11 0 x13 0 x15 0

a1 0 a3 0 a5 0 a7 0
F
→ A1 0 A3 0 A3 0 A1 0

b1 0 b3 0 b5 0 b7 0
F
→ B1 0 B3 0 B3 0 B1 0

c1 0 c3 0 c5 0 c7 0
F
→ C1 0 C3 0 C3 0 C1 0

d1 0 d3 0 d5 0 d7 0
F
→ D1 0 D3 0 D3 0 D1 0

e1 0 e3 0 e5 0 e7 0
F
→ E1 0 E3 0 E3 0 E1 0

y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

Note that ai = xi for i ∈ {1, 3, 5, 7}. Here it is assumed that ai 6= 0, bi 6= 0,
ci 6= 0, di 6= 0, ei 6= 0, for i ∈ {1, 3, 5, 7}. In a chosen plaintext attack one
can choose the plaintexts such that ai = xi 6= 0 for i ∈ {1, 3, 5, 7}. The
probability that the difference in the four input words is nonzero in one round
is (255

256
)4 ≈ 0.984. The total probability is therefore (0.984)42−80 ≈ 2−80. In

the following we shall ignore the factors 0.984.
Note that the exclusive-or of the difference in the plaintext vectors and the

difference in the ciphertext vectors (after five rounds) has the following form.

z1 0 z3 0 z3 0 z1 0 z9 0 z11 0 z11 0 z9 0 (1)

This follows from the observation that the exclusive-or of the right half of the
plaintext and the right half of the ciphertext equals the exclusive-or of the
outputs of the F -function in the fourth and second rounds. And similarly, the
exclusive-or of the left half of the plaintext and the left half of the ciphertext
equals the exclusive-or of the outputs of the F -function in the fifth, third and
first rounds. For a randomly chosen permutation the exclusive-or of the pairs of
plaintexts and pairs of ciphertexts will have the form of (1) with a probability
of 2−96. For Camellia this happens with probability of at least 2−80, since if the
texts follow the differential we will have the form (1). Recently, we presented
a new approach of how to use differentials to distinguish block ciphers from
randomly chosen permutations [1]. In the following we shall apply this method
to Camellia.

4

1.2.1 Distinguishing attacks

The above differential can be enhanced by letting the first round be a trivial
round with probability one.

0 0 0 0 0 0 0 0 x9 0 x11 0 x13 0 x15 0

0 0 0 0 0 0 0 0
F
→ 0 0 0 0 0 0 0 0

b1 0 b3 0 b5 0 b7 0
F
→ B1 0 B3 0 B3 0 B1 0

c1 0 c3 0 c5 0 c7 0
F
→ C1 0 C3 0 C3 0 C1 0

d1 0 d3 0 d5 0 d7 0
F
→ D1 0 D3 0 D3 0 D1 0

e1 0 e3 0 e5 0 e7 0
F
→ E1 0 E3 0 E3 0 E1 0

y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

The probability of this differential is 2−64. There are only 4 nonzero bytes in
the plaintext difference. From one structure of 232 plaintexts one can form 263

pairs of plaintexts with the desired difference. Thus for Camellia reduced to 5
rounds, with 4 structures one would get 265 pairs of plaintexts, and consequently
one would get approximately two ciphertext pairs for which (1) is satisfied. For
a randomly chosen permutation one would get approximately 2−31 ciphertext
pairs with the desired difference. Thus with a high probability one can distin-
guish Camellia with five rounds from a randomly chosen permutation.

Fact 1 The first five rounds of Camellia can be distinguished from a random

permutation using about 234 chosen plaintexts.

We can extend this attack to an attack on six rounds of Camellia. The
differential can be extended to six rounds by adding one round of probability
2−16.

0 0 0 0 0 0 0 0 x9 0 x11 0 x13 0 x15 0

0 0 0 0 0 0 0 0
F
→ 0 0 0 0 0 0 0 0

a1 0 a3 0 a5 0 a7 0
F
→ A1 0 A3 0 A3 0 A1 0

b1 0 b3 0 b5 0 b7 0
F
→ B1 0 B3 0 B3 0 B1 0

c1 0 c3 0 c5 0 c7 0
F
→ C1 0 C3 0 C3 0 C1 0

d1 0 d3 0 d5 0 d7 0
F
→ D1 0 D3 0 D3 0 D1 0

e1 0 e3 0 e5 0 e7 0
F
→ E1 0 E3 0 E3 0 E1 0

y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

This differential has a probability of approximately 2−80. For a pair of plaintexts
following the differential one will have the form of (1) for the exclusive-or of
the ciphertext and plaintext differences. To use this differential to distinguish
Camellia from a randomly chosen permutation, one has to generate about 281

pairs of plaintexts with the desired difference. So to generate 281 pairs one
would need about 218 structures, totally about 250 chosen plaintexts. The
distinguishing technique is the same as above for five rounds.

Fact 2 The first six rounds of Camellia can be distinguished from a random

permutation using about 250 chosen plaintexts.

5

If we ignore the functions FL and FL−1 we can extend the attack to seven
rounds of Camellia. First we extend the above six-round differential by adding
another 1-round differential of probability 2−16.

0 0 0 0 0 0 0 0 x9 0 x11 0 x13 0 x15 0

0 0 0 0 0 0 0 0
F
→ 0 0 0 0 0 0 0 0

a1 0 a3 0 a5 0 a7 0
F
→ A1 0 A3 0 A3 0 A1 0

b1 0 b3 0 b5 0 b7 0
F
→ B1 0 B3 0 B3 0 B1 0

c1 0 c3 0 c5 0 c7 0
F
→ C1 0 C3 0 C3 0 C1 0

d1 0 d3 0 d5 0 d7 0
F
→ D1 0 D3 0 D3 0 D1 0

e1 0 e3 0 e5 0 e7 0
F
→ E1 0 E3 0 E3 0 E1 0

f1 0 f3 0 f5 0 f7 0
F
→ F1 0 F3 0 F3 0 F1 0

y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

This differential also has a probability of approximately 2−96. As before, we
will generate many plaintext pairs and count the number of pairs for which
(1) hold. However, note that the probability of the differential is the same
as the probability that for a randomly chosen permutation (1) will hold. For
Camellia with seven rounds, ignoring the functions FL and FL−1, (1) will hold
for all pairs which follow the differential. Clearly for all pairs the first round
of the differential will hold. A pair of plaintexts will not follow the second
round with probability 1 − 2−16. If we assume, which seems plausible, that
the ciphertext differences in these cases look random, then (1) will hold also
in these cases with a probability of 2−96. All together, the probability for this
seven-round version of Camellia that the plaintext and ciphertext difference
will satisfy (1) is approximately 2−96 + (1 − 2−16)2−96 ' 2−95. (Actually, this
probability also covers the cases where the pair of texts follow the differential
in the first round, but not the second, and the cases where the pair of texts
follow the differential in the first two rounds, but not in the third, and so on.
However, the sum of the probabilities of all these cases are small compared to the
above probabilities.) To distinguish this version of Camellia from a randomly
chosen permutation we pick 236 structures (as above) which gives us 299 pairs
of plaintexts with the desired differences. For the Camellia-version this yields
about 16 pairs of texts for which (1) holds, while the expected number for a
randomly chosen permutation is 8. Since the standard deviation in the first
case is 4 and around 3 in the last case, with a high probability we will be able
to distinguish between the two. Totally this attack needs 268 chosen plaintexts
and we have the following result.

Fact 3 The first seven rounds of Camellia without the functions FL and FL−1

can be distinguished from a random permutation using about 268 chosen plain-

texts.

We could try and extend this one round further by adding another round of
probability 2−16 to the above differential. The probability will be 2−112. How-
ever, in this case the difference in probabilities of obtaining texts on the form of
(1) will be very small. For the Camellia-version the total probability of getting

6

such pairs will be approximately 2−112 + (1 − 2−16)2−96 = 2−96 which is what
one can expect also for a randomly chosen permutation.

It does not seem possible to extend the approach of distinguishing Camellia
from a randomly chosen permutation further than to versions reduced to 7
rounds. However, there exist differentials for Camellia for even more number
of rounds.

1.2.2 The existence of differentials

Consider the above differentials for five, six and seven rounds. There are 216−28

pairs of bytes with a nonzero exclusive-or difference, and 28 pairs of bytes with
zero exclusive-or. The differences x9, x11, x13, and x15 can take any value, thus
totally 232 values and consequently there are approximately 263 possible pairs
for all four bytes together. Thus, there are approximately 263 × (28)12 = 2159

pairs of plaintexts with the desired difference. If we ignore the keyed functions
FL and FL−1 in Camellia we can iterate the above differential to any number
of rounds, with a decrease in probability of a factor of 2−16 for every additional
round. Iterated to eleven rounds the probability is approximately (2−16)10 =
2−160. Therefore, for this version of Camellia for about one in every two keys,
one can expect to find one pair of plaintexts, which will follow the expected
(zero) values specified in the differential in every round.

However, here we assumed that the functions FL and FL−1 were not used.
Let us analyse these functions with respect to the differences used above. If
two 64-bit texts have a difference of (a 0 b 0 b 0 a 0) in the input to FL (or
FL−1) then the differences in the outputs will be of the form (f 0 e 0 c 0 d 0)
with some high probability. However, the values of f and e will not be equal
nor will the values of c and d. To see why this is the case, let us take a closer
look at FL. The first operation is to bitwise ‘AND’ the left half of the input
with a subkey, rotate the result by one position to the left, and exclusive-or this
result to the right half of the input. Thus, if the left halves of two inputs has a
difference (a 0 b 0), the difference after the ‘AND’ of a key will be (a′ 0 b′ 0),
where a′ and b′ have Hamming weights at most those of a and b respectively.
If the most significant bits of the leftmost bytes of the inputs (the bytes with
difference a) are equal, they will be equal after the ‘AND’ operation; if the bits
are different they will be equal after the ‘AND’ operation with a probability of
1/2, where the probability is taken over all keys. Similar observations for the
most significant bits of the third leftmost bytes (the bytes with difference b).
If the involved bits are equal, the one-bit rotation leaves the difference in the
second and fourth bytes zero. Note that in that case the right halves of the
output of FL will have the form (c 0 d 0). The ’OR’ operation in the second
“round” of FL means that the left halves of the outputs of FL will have the
form (f 0 e 0). In total the differential

(a 0 b 0 b 0 a 0)
FL
→ (f 0 e 0 c 0 d 0)

has probability at least 1/4 for all keys, probability at least 1/2 for three of four
keys, and probability 1 for one in four keys, where the probability is taken over
all input texts. A similar observation can be made about the function FL−1.

7

In an attempt to specify differentials for more rounds of Camellia, one could
allow both the left and the right halves of the plaintexts to take any values, and
modify the differential accordingly. The differential would have the following
form.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

a1 a2 a3 a4 a5 a6 a7 a8
F
→ A1 A2 A3 A4 A5 A6 A7 A8

b1 0 b3 0 b5 0 b7 0
F
→ B1 B2 B3 B4 B5 B6 B7 B8

c1 0 c3 0 c5 0 c7 0
F
→ C1 0 C3 0 C3 0 C1 0

...

m1 0 m3 0 m5 0 m7 0
F
→ M1 0 M3 0 M3 0 M1 0

y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

Here it is assumed that xi+8 = Ai for i ∈ {2, 4, 6, 8} and that ai = Bi for
i ∈ {2, 4, 6, 8}. The probability for r rounds, r > 2 is 2−16r−32 with an addition
decrease in probability of a factor of 2−4 for every layer of FL and FL−1. Such a
differential would have probabilities 2−32 in the first two rounds, and as before,
a probability of 2−16 in subsequent rounds. This would give approximately 2255

pairs of plaintexts available in the analysis. However, for such pairs of plaintexts
and ciphertexts, pairs satisfying the differential can no longer be assumed to
have the form of (1) for neither halves. However, every second byte of the
ciphertext would still be expected to be zero.

This means that for Camellia (including FL and FL−1) reduced to 13
rounds, the above differential has a probability of 2−16·13−32−4−4 = 2−248. Thus,
there will exist pairs of plaintexts following the expected values in the differen-
tial for up to 13 rounds. However, it is very difficult to see the applications of
such (good) pairs in cryptanalytic attacks.

Summing up, there exist truncated differentials for every fixed key for up to
13 rounds of Camellia, specifying 64 bits of information after every round. We
showed that these differentials can be used to distinguish Camellia when reduced
to 6 rounds from a randomly chosen permutation. We expect that this 6-round
distinguisher can be extended to a key-recovery attack on Camellia reduced to
7 rounds. Also, we showed that for Camellia reduced to 7 rounds but without
the functions FL and FL−1 there is a distinguishing attack requiring 268 chosen
plaintexts.

1.3 The Key-schedule

The key-schedule takes a 128-bit, a 192-bit or a 256-bit key, K, as input. In
the first phase the key-schedule defines two keys KL and KR each of 128 bits,
and then computes two other keys of 128 bits each, KA and KB , as a function
of the user-selected key. The key KB is used only for the 192-bit and 256-bit
key versions.

For the 128-bit key version KL = K and KR = 0. For the 192-bit key
version KL is the leftmost 128 bits of K, and the remaining 64 bits are assigned
the left half of KR. The right half of KR is the bitwise negated value of its left
half. For the 256-bit key version, KL is the leftmost 128 bits of K, and KR the

8

rightmost 128 bits of K. KA is computed as follows. Let C i = Ci
L | Ci

R and let
C0 = KL ⊕ KR. Then we compute

C1
L = F (C0

L, σ1) ⊕ C0
R (2)

C1
R = C0

L (3)

C2
L = F (C1

L, σ2) ⊕ C1
R (4)

C2
R = C1

L (5)

C2 = C2 ⊕ KL (6)

C3
L = F (C2

L, σ3) ⊕ C2
R (7)

C3
R = C2

L (8)

C4
L = F (C3

L, σ4) ⊕ C3
R (9)

C4
R = C3

L, (10)

and define KA = C4. Set C4 = C4 ⊕ KR, compute

C5
L = F (C4

L, σ5) ⊕ C4
R (11)

C5
R = C4

L (12)

C6
L = F (C5

L, σ6) ⊕ C5
R (13)

C6
R = C5

L, (14)

and define KB = C6. The values σi are fixed constants. For the 128-bit key
version the 26 round keys of each 64 bits are computed from the keys KL and
KA. For the 192-bit key and 256-bit versions the 34 round keys of each 64 bits
are computed from the keys KL,KR,KA and KB .

First, we are convinced that the above key-schedule makes related-key at-
tacks very difficult. In these attacks an attacker must be able to get encryptions
under several related keys. If the relation between, say, two keys is known then
if the corresponding relations between the round-keys can be predetermined,
sometimes one can predict how the keys encrypt a pair of different plaintexts.
However, since the round-keys depend on KA and KB , which are results of
encryptions, these round-key relations will be very hard to control and predict.
Also, the slide-attacks seems to be very unlikely to succeed for Camellia.

Our second observation is that the above description of the key-schedules
can be simplified somewhat. Consider the version of Camellia with 128-bit keys.
Let KL = KLL | KLR and set C0 = 0. Then we compute

C1
L = F (C0

L,KLL ⊕ σ1) ⊕ C0
R (15)

C1
R = C0

L (16)

C2
L = F (C1

L,KLR ⊕ σ2) ⊕ C1
R (17)

C2
R = C1

L (18)

C3
L = F (C2

L, σ3) ⊕ C2
R (19)

C3
R = C2

L (20)

C4
L = F (C3

L, σ4) ⊕ C3
R (21)

C4
R = C3

L. (22)

9

Then again KA = C4. Note that this definition saves one exclusive-or operation
and further the structure is now of a classical Feistel-type. All in all, the key KA

is the ciphertext of the plaintext zero in a four-round Feistel encryption scheme
using the Camellia round function. The round keys in this Feistel scheme are
dependent on the halves of the key KL in the first two rounds, but they are
fixed in the final two rounds. This has the effect that if an attacker is able,
by some means, to find the value of KA, then he can compute the key KL in
a straightforward manner. Also, if an attacker is able to find KAR and KLL

(totally 128 bits), then he can compute all of KA and KL. In both cases, the
attacker can compute the values of all round-keys. Since KA is the ciphertext of
a 4-round Feistel cipher depending on KL, the above properties are somewhat
surprising.

Consider next the version of Camellia with 192-bit and 256-bit keys. Let
KL = KLL | KLR, KR = KRL | KRR, and set C0 = 0. Then we compute

C1
L = F (C0

L,KLL ⊕ KRL ⊕ σ1) ⊕ C0
R (23)

C1
R = C0

L (24)

C2
L = F (C1

L,KLR ⊕ KRR ⊕ σ2) ⊕ C1
R (25)

C2
R = C1

L (26)

C3
L = F (C2

L, σ3 ⊕ KRL) ⊕ C2
R (27)

C3
R = C2

L (28)

C4
L = F (C3

L, σ4 ⊕ KRR) ⊕ C3
R (29)

C4
R = C3

L (30)

C5
L = F (C4

L, σ5) ⊕ C4
R (31)

C5
R = C4

L (32)

C6
L = F (C5

L, σ6) ⊕ C5
R (33)

C6
R = C5

L (34)

Then KA = C4 ⊕KR and KB = C6. Here one can compute KA ⊕KR from KB

and similarly from KB one can compute KA ⊕ KR.
We do not think that the above considerations imply a speed-up of an

exhaustive key search, only that knowledge of some round-keys gives immediate
knowledge of other round-keys. It seems that such properties could be avoided
in a re-design of the key-schedule.

1.4 The S-boxes

Camellia uses four S-boxes, s1, s2, s3, and, s4. s1 is derived from an inversion
function in GF (28) together with an affine transformation in the outputs and in
the inputs. The other S-boxes are derived from s1 by a simple rotation by one
position of either the input or the output. In more detail, s2(x) = s1(x) << 1,
s3(x) = s1(x) >> 1, and s4(x) = s1(x << 1). Clearly, the four S-boxes are
very related. The advantages of deriving all S-boxes from one S-box are clear
for implementation reasons. The disadvantages are not as clear, however, if
an attacker would find a weakness in one of the S-boxes, then there is a high

10

probability that this weakness would appear in all S-boxes. We have not found
any reason to suspect that cryptographic weaknesses are present nor will be
detected in any of the S-boxes. Also, ciphers like the AES-candidate Rijndael
make a more simple use of only one S-box. The S-box in Rijndael is derived
in a manner similar to that of Camellia and is used throughout the cipher. So
far, no reports have been published that this is a weakness for Rijndael. Thus
there is no immediate indication that this poses any threat for the security of
Camellia.

1.5 Other attacks

The S-boxes used in Camellia have the highest possible nonlinear order of 8-
bit S-boxes, namely seven. Therefore it can be expected that higher order
differential attacks will have only limited applications.

Since the round function of Camellia is bijective, the non-surjective attack
will not be applicable.

The interpolation attacks work particularly well for ciphers for which the
nonlinear components have a simple mathematical description. For Camellia,
the S-boxes used have a complex description. Furthermore the use of the func-
tions FL and FL−1 are likely to destroy any mathematical structure from the
S-boxes. In our opinion it is very unlikely that the interpolation attack will be
of any threat to Camellia.

The mod-n cryptanalysis works particularly well for ciphers using a mix of
rotations and modular additions. Since Camellia uses the exclusive-or opera-
tion and no modular additions, the mod-n analysis will not be applicable to
Camellia.

Finally, there are the trivial brute-force attacks. First, an exhaustive key
search will be applicable to Camellia, but because of the size of the keys, such
searches are unlikely to be feasible for at least the next 30 years. The matching
ciphertext attack works for all block ciphers and depends only on the block
size n. With 2n/2 ciphertext blocks one can expect to see at least two equal
ciphertext blocks. This gives information about some plaintext blocks in three
of the four standard modes of operation. For Camellia, this means that a
maximum of 264 blocks should be encrypted using one key.

2 Concluding Remarks

We have analysed Camellia and found no important weaknesses. The cipher has
a conservative design and any practical attacks against Camellia would require
a major breakthrough in the area of cryptanalysis of encryption systems. We
think that Camellia is a very strong cipher, which matches the security of the
best block ciphers today.

11

References

[1] L.R. Knudsen. A detailed analysis of SAFER. The Journal of Cryptology,
13(4):417–436, 2000.

[2] M. Matsui and T.Tokita. Cryptanalysis of a reduced version of the block
cipher E2. In L. R. Knudsen, editor, Fast Software Encryption, Sixth In-

ternational Workshop, Rome, Italy, March 1999, LNCS 1636, pages 71–79.
Springer Verlag, 1999.

[3] NTT, Mitsubishi. Camellia - 128-bit block cipher.

