
A HIGH THROUGHPUT FPGA CAMELLIA
IMPLEMENTATION

Daniel Denning, James Irvine, Malachy Devlin

Institute of System Level Integration, Alba Centre, Alba Campus,
Livingston, EH54 7EG, UK

E-mail: daniel.denning@sli-instiute.ac.uk

ABSTRACT
In this paper we present a Field Programmable
Gate Array (FPGA) implementation of the
Camellia encryption algorithm. Our
implementation deeply sub-pipelines the algorithm
for the FPGA architecture. Camellia has been
included in both portfolios of the New European
Schemes for Signatures, Integrity, and Encryption
(NESSIE) for Europe and the Cryptography
Research and Evaluation Committee (CRYPTREC)
in Japan. The implementation is the fastest
published throughput for the entire block ciphers
recommended in both portfolios for NESSIE and
CRYPTREC, and runs at a throughput of
33.25Gbit/sec.

1. INTRODUCTION
The Camellia [1] symmetric-key block cipher has
been recognised by an open call from NESSIE [2]
and CRYPTREC [3] as a cryptographic algorithm
to help protect the current and future information
society. FPGAs provide a very beneficial platform
for implementing cryptographic systems because of
the inherent parallelism of the device.

NESSIE was a European Union (EU) initiative
and a project with in the Information Society
Technologies (IST) of the EU. Camellia was
selected with three other block ciphers from the 42-
encryption algorithms that were submitted. The
other two block ciphers being MISTY1 and
SHACAL-2. The AES algorithm was also selected
but selected on its evaluation from the National
Institute of Standards and Technology (NIST).
Other algorithms included digital signatures,
identification schemes, public-key encryption, MAC
algorithms, and hash functions.

The Camellia algorithm is a 128-bit block
cipher jointly developed by NTT and Mitsubishi
Electric Corporation. The algorithm has also been
submitted to other standardisation organisations and

evaluation projects such as ISO/IEC JTC 1/SC 27,
IETF, and TV-Anytime Forum. Previous Camellia
implementations have been published in [4,5] but
do not investigate a sub-pipelining architecture.

2. OVERVIEW OF CAMELLIA
ALGORITHM

The Camellia algorithm processes data blocks of
128-bits with secret keys of lengths 128, 192, or 256
bits. Note that Camellia has the same interface as
the AES (Advanced Encryption Standard). In our
implementation we focus on the algorithm using a
key length of 128-bits that is key agile. A key agile
core requires that on each clock cycle new data and
cipher key must be accepted.

A key length of 128-bits results in an 18 round
Feistel structure. After the 6th and 12th rounds
FL/FL-1 function layers are inserted to provide some
non-regularity across rounds. There are also two
64-bit XOR operations before the first round and
after the last, also known as pre- and post-
whitening. The top-level structure of the algorithm
can be seen in Figure 1, as well as the inner 6 round
structure. The key schedule, discussed later in this
section, generates subkeys for each round, FL/FL-1
layers, and pre- and post-whitening.

The FL-function is defined by:
 YR(32) = ((XL(32) ∩ klL(32)) <<< 1) ⊕ XR(32), (1)
 YL(32) = (YR(32) ∪ klR(32)) ⊕ XL(32), (2)

where YL(32) are the 32 most significant bits of the
64-bit output and YR(32) are the 32 least significant
bits. The FL-1 function is just the inverse of FL.
Each round can be composed of an F-function with
a XOR. A different subkey is applied to each F-
function and the output is XORed with the previous
but one result. The F-function is defined as

 Y(64) = P(S(X(64) ⊕ k(64)). (3)
The P-function is constructed only of XOR
components and is a linear transformation from 8
input bytes to 8 output bytes. The S-function

represents a substitution using one of 4 s-boxes that
are defined by:

 S1(x) = h(g(f(x ⊕ a))) ⊕ b, (4)
 S2(x) = S1(x) <<< 1, (5)
 S3(x) = S1(x) >>> 1, (6)
 S4(x) = S1(x <<< 1), (7)

where f and h are linear mappings, g is an inverse
over GF(28), and a, b are fixed constants.

The Camellia key schedule for a 128-bit key
produces twenty-six 64-bit subkeys, for use in the
18 rounds, pre- and post-whitening and FL/FL-1
function layers. Figure 2 shows the first step that
involves deriving a 128-bit variable KA(128) from the
original secret key K. Then the second step
involves generating further round keys by cyclic
rotating either K (now KL) or KA by 15 or 17.

The Camellia decryption procedure is exactly
the same as the encryption, it does not have any
inverse functions like with in the AES algorithm,
but the keys are needed in reverse order. So the
subkey that was needed to encrypt the data block in
round 18 is now needed to decrypt in round 1. This
can cause a delay in the overall decryption process
if the subkeys need to be produced first, before
decryption can take place. This can be overcome
when the decryption receives the pre-computed
subkeys from the sender.

kl2

kl4

FL-1

FL-1

FL

FL

M(128)

kw1 kw2

k1, k2,
k3, k4,
k5, k6

k7, k8,
k9, k10,
k11, k12

k13, k14,
k15, k4,
k5, k6

kl1

kl3

kw4 kw3

C(128)

k1

k2

k3

k4

k5)

k6

F

F

F

F

F

F

64 64
64 64

Figure 1. Top-level procedure of Camellia
(left-hand side) showing inner structure of 6

Rounds (right-hand side)

Σ1(64)

Σ2(64)

Σ3(64)

Σ4(64)

K(128)

K(128)

F

F

F

F

KA(128)

Figure 2. Key schedule architecture for
Camellia

Figure 3. Sub-Pipelined F-Function

y(64)

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

x(64)

S1 S2 S3 S4 S2 S3 S4 S1

3. SUB-PIPELINING ARCHITECTURE

In this section we describe the sub-pipelined
architecture but it includes previous classical
encryption optimisation techniques to increase the
algorithms throughput at the higher level within the
algorithm. These include such optimisations as
unrolling, round pipelining, and transformation
partitioning. The implementation is key agile thus
providing very high security and throughput as new
data blocks can be encrypted on each clock cycle
with a different key.

For the sub-pipelining architecture we have fully
unrolled and added pipelining registers between
each encryption round. We have then also added 5
stages of sub-pipelining shift registers into the F-
Function. The registers have been added between
the P-Function, S-Function and the XOR. With a
pipeline stage also added into the P-Function and a
register at the output of the F-function. This
architecture produces a pipeline delay of 108 clock

1 Included in both CRYPTREC and NESSIE.
2 Finalists not included in NESSIE portfolio.
3 Implemented on a Altera FPGA device
4 Only able to find ASIC implementation

cycles but does not have an effect on throughput.
Further improvements might be made with some
algorithm optimisations or floor planning. Adding
the registers into the P-Function means that the
function now has a branch number of 3 or 2 instead
of 5 depending on the data path. The architecture
of F-Function can be seen in Figure 3 on the
previous page. The registers can be seen in-
between each of the F-function operations.

One other important optimisation techniques
specific for the FPGA architecture is the use of
dual-port block-RAM. Every round has its own
associated F-function, as described earlier, and each
function utilises 4 different s-boxes for byte
substitution. Each F-function makes 2 calls to the
same s-box. For this implementation we have
chosen to use dual ported block-RAMs for the s-
boxes.

4. RESULTS

We have implemented the sub-pipelined
architecture on a Virtex-II pro XC2Vp50 device.
The core was designed with Xilinx’s System
Generator, which produced the VHDL and
associated files. The VHDL was synthesised with
ISE 5.2 and verified with the test vectors that were

Algorithm Authors Device Area
Slices

(BRAMS)

Key
agility

Throughput
Gbits/sec

Efficiency
Mbps/slices

 Camellia1

Authors XC2Vp50 11,287
(88)

YES 33.25 -

 AES-1281

Zambreno
et al. [6]

XC2V4000 16938 YES 23.57 1.39

 MISTY11

Rouvroy et

al. [7]
XCV1000 6,322 YES 19.34 3.06

 SHACAL-12 McLoone et
al. [8]

XC2V4000 13,729 NO 17.02 1.24

 IDEA2 Gonzalez et
al. [9]

XCV600 12,026
(estimated)

NO 8.3 0.69

 RC62 Beuchat
[10]

XC2V3000 8,554
(80)

NO
(assumed)

15.2 -

 Hierocrypt-3 3

Rogawski
[11]

EPF10K130V 25811
LE

YES
(assumed)

0.397 -

CIPHERUNICORN-
A3

NEC [12] EP20K1500E 7072 LE
(66

ESB)

YES

0.044 -

SC20004

Shimoyama
et al. [13]

[0.25µm
CMOS ASIC

65K
gates

YES
(assumed)

0.397 -

Table 1. Summary of CRYPTREC and NESSIE 128-bit Block Cipher Winners
and Finalists on FPGAs

submitted to NESSIE. The core runs at a frequency
of 259MHz that results in a throughput of
33.25GBits/sec. The implementation requires
11,287 slices (47%) of the FPGA and uses 88 block-
RAMs (37%). Generally comparisons against other
encryption implementations can be difficult and can
depend on architecture, device, embedded cores
such as block-RAM, key agility, on-chip key
scheduling, and other such criteria. Table 1 shows
a list of other known high throughput FPGA
architectures for NESSIE and CRYPTREC. For
implementations that have used block-RAMs we
have not included the efficiency. It is possible to
calculate the extra number of slices that the block-
RAMs would occupy if distributed memory was to
be used, but this sort of calculation doesn’t take into
account the extra routing, which would have an
effect on the total throughput and therefore the
efficiency.

5. CONCLUSION

In this paper we have presented a sub-pipelined
Camellia implementation that has a throughput of
33.25Gbit/sec. Compared to other published FPGA
implementations this is the fastest known
throughput of all block ciphers (128-bit)
recommended by NESSIE and CRYPTREC. The
importance of this algorithm has been proved in the
open-call by NESSIE and CRYTREC.

The core is able to receive new secret keys and
data on every clock cycle. We have utilised the
available dual-port block-RAMs for use in the F-
Function and been able to pipeline the algorithm to
the lowest level and then apply this to the FPGA
architecture. The core has a very high throughput
and thus could be used in a secure high
performance computing application. As the core
takes less then 50% of the Virtex 2 pro it might be
possible to put two cores down thus being able to
obtain a throughput on one FPGA device of around
66Gbits/sec. This will be part of the work for the
future.

6. REFERENCES

[1] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M.,
Moriai, S., Nakajima, J., Tokita, T.,
“Specification of Camellia – 128-bit Block
Cipher”, URL:
http://info.isl.ntt.co.jp/camellia/#Spec,
September 2001.

[2] NESSIE, “NESSIE Project Announces Final
Selection of Crypto Algorithms”, IST-199-
12324, February 2003.

[3] CRYPTREC, Information-Technology
Promotion Agency, Japan, “CRYPTREC
Report 2002”,

[4] Denning, D., Irvine, J., Delvin, M., “A Key
Agile 17.4Gbit/sec Camellia Implementation”,
proceedings of FPL’04, Antwerp, Belgium,
Aug. 2004.

[5] Ichikawa, T., Sorimachi, T., Kasuya, T.,
Matsui, M., “On the Criteria of Hardware
Evalution of Block Ciphers(1)”, Techn report
of IEICE, ISEC2001-53, September 2001.

[6] Zambreno, J., Nguyen, D., Choudhary, A.,
“Exploring Area/Delay Tradeoffs in an AES
FPGA Implementation”, proceedings of
FPL’04, Antwerp, Belguim, Aug. 2004.

[7] Rouvroy. G., Standaert, F.X., “Efficient FPGA
Implementation of Blcok Cipher MISTY1”,
proceedings IPDPS’03, France, April 2003.

[8] McLoone, M., McCanny, J. V., “Very High
Speed 17 Gbps SHACAL Encryption
Architecture”, in Proc. Of the 13th Int’l
Conference on Field-Programmable Logic and
its Applications (FPL), Portugal, September
2003.

[9] Gonzalez, I., Lopez-Buebo, S., Gomez, F. J.,
Martinez, J., “Using Partial Reconfiguration in
Cryptographic Applications: An
Implementation of the IDEA Algorithm”, in
Proc. Of the 14th Int’l Conference on Field-
Programmable Logic and its Applications
(FPL), Portugal, September 2003.

[10] Beuchat, J. L., “FPGA Implementations of the
RC6 Block Cipher”, in Proc. Of the 13th Int’l
Conference on Field-Programmable Logic and
its Applications (FPL), Portugal, September
2003.

[11] Rogawski, M., “Analysis of Implementation
Hierocrypt-3 Algorithm (and its comparison to
Camellia algorithm) using ALTERA devices”,
Electronic Edition, CoRR cs CR/0312035,
2003.

[12] NEC Corporation, “Self Evaluation Report –
CIPHERUNICORN-A”, unpublished date.

[13] Shimoyama, T., Hitoshi, Y., Kazuhiro, Y.,
Takenaka, M., Itoh, K., Yjima, J., Torii, N.,
Tanaka, H., “Specification and Supporting
Document of the Block Cipher SC2000”, IST-
199-12324, February 2003.

