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ABSTRACT 
In this paper we present a Field Programmable 
Gate Array (FPGA) implementation of the 
Camellia encryption algorithm.  Our 
implementation deeply sub-pipelines the algorithm 
for the FPGA architecture.  Camellia has been 
included in both portfolios of the New European 
Schemes for Signatures, Integrity, and Encryption 
(NESSIE) for Europe and the Cryptography 
Research and Evaluation Committee (CRYPTREC) 
in Japan.  The implementation is the fastest 
published throughput for the entire block ciphers 
recommended in both portfolios for NESSIE and 
CRYPTREC, and runs at a throughput of 
33.25Gbit/sec. 

1. INTRODUCTION 
The Camellia [1] symmetric-key block cipher has 
been recognised by an open call from NESSIE [2] 
and CRYPTREC [3] as a cryptographic algorithm 
to help protect the current and future information 
society.  FPGAs provide a very beneficial platform 
for implementing cryptographic systems because of 
the inherent parallelism of the device.   

NESSIE was a European Union (EU) initiative 
and a project with in the Information Society 
Technologies (IST) of the EU.  Camellia was 
selected with three other block ciphers from the 42-
encryption algorithms that were submitted.  The 
other two block ciphers being MISTY1 and 
SHACAL-2.  The AES algorithm was also selected 
but selected on its evaluation from the National 
Institute of Standards and Technology (NIST).  
Other algorithms included digital signatures, 
identification schemes, public-key encryption, MAC 
algorithms, and hash functions. 

The Camellia algorithm is a 128-bit block 
cipher jointly developed by NTT and Mitsubishi 
Electric Corporation.  The algorithm has also been 
submitted to other standardisation organisations and 

evaluation projects such as ISO/IEC JTC 1/SC 27, 
IETF, and TV-Anytime Forum.  Previous Camellia 
implementations have been published in [4,5] but 
do not investigate a sub-pipelining architecture. 

2. OVERVIEW OF CAMELLIA 
ALGORITHM 

The Camellia algorithm processes data blocks of 
128-bits with secret keys of lengths 128, 192, or 256 
bits.  Note that Camellia has the same interface as 
the AES (Advanced Encryption Standard).  In our 
implementation we focus on the algorithm using a 
key length of 128-bits that is key agile. A key agile 
core requires that on each clock cycle new data and 
cipher key must be accepted. 

A key length of 128-bits results in an 18 round 
Feistel structure.  After the 6th and 12th rounds 
FL/FL-1 function layers are inserted to provide some 
non-regularity across rounds.  There are also two 
64-bit XOR operations before the first round and 
after the last, also known as pre- and post-
whitening.  The top-level structure of the algorithm 
can be seen in Figure 1, as well as the inner 6 round 
structure.  The key schedule, discussed later in this 
section, generates subkeys for each round, FL/FL-1 
layers, and pre- and post-whitening. 

The FL-function is defined by: 
 YR(32) = ((XL(32) ∩ klL(32)) <<< 1) ⊕ XR(32), (1) 
 YL(32) = (YR(32) ∪ klR(32)) ⊕ XL(32),  (2) 

where YL(32) are the 32 most significant bits of the 
64-bit output and YR(32)  are the 32 least significant 
bits.  The FL-1 function is just the inverse of FL.  
Each round can be composed of an F-function with 
a XOR.  A different subkey is applied to each F-
function and the output is XORed with the previous 
but one result.  The F-function is defined as 

 Y(64) = P(S(X(64) ⊕ k(64)).  (3) 
The P-function is constructed only of XOR 
components and is a linear transformation from 8 
input bytes to 8 output bytes.  The S-function 



represents a substitution using one of 4 s-boxes that 
are defined by: 

 S1(x)  =  h(g(f(x ⊕ a))) ⊕ b,  (4) 
 S2(x)  =  S1(x) <<< 1,  (5) 
 S3(x)  =  S1(x) >>> 1,  (6) 
 S4(x)  =  S1(x <<< 1),  (7) 

where f and h are linear mappings, g is an inverse 
over GF(28), and a, b are fixed constants. 

The Camellia key schedule for a 128-bit key 
produces twenty-six 64-bit subkeys, for use in the 
18 rounds, pre- and post-whitening and FL/FL-1 
function layers.  Figure 2 shows the first step that 
involves deriving a 128-bit variable KA(128) from the 
original secret key K.  Then the second step 
involves generating further round keys by cyclic 
rotating either K (now KL) or KA by 15 or 17.   

The Camellia decryption procedure is exactly 
the same as the encryption, it does not have any 
inverse functions like with in the AES algorithm, 
but the keys are needed in reverse order.  So the 
subkey that was needed to encrypt the data block in 
round 18 is now needed to decrypt in round 1.  This 
can cause a delay in the overall decryption process 
if the subkeys need to be produced first, before 
decryption can take place.  This can be overcome 
when the decryption receives the pre-computed 
subkeys from the sender. 
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Figure 1. Top-level procedure of Camellia 
(left-hand side) showing inner structure of 6 

Rounds (right-hand side) 
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Figure 2. Key schedule architecture for 
Camellia 

Figure 3. Sub-Pipelined F-Function 
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3. SUB-PIPELINING ARCHITECTURE 

In this section we describe the sub-pipelined 
architecture but it includes previous classical 
encryption optimisation techniques to increase the 
algorithms throughput at the higher level within the 
algorithm.  These include such optimisations as 
unrolling, round pipelining, and transformation 
partitioning.  The implementation is key agile thus 
providing very high security and throughput as new 
data blocks can be encrypted on each clock cycle 
with a different key.   

For the sub-pipelining architecture we have fully 
unrolled and added pipelining registers between 
each encryption round.  We have then also added 5 
stages of sub-pipelining shift registers into the F-
Function.  The registers have been added between 
the P-Function, S-Function and the XOR.  With a 
pipeline stage also added into the P-Function and a 
register at the output of the F-function.  This 
architecture produces a pipeline delay of 108 clock 

                                                        
1 Included in both CRYPTREC and NESSIE. 
2 Finalists not included in NESSIE portfolio. 
3 Implemented on a Altera FPGA device 
4 Only able to find ASIC implementation 

cycles but does not have an effect on throughput.  
Further improvements might be made with some 
algorithm optimisations or floor planning.  Adding 
the registers into the P-Function means that the 
function now has a branch number of 3 or 2 instead 
of 5 depending on the data path.  The architecture 
of F-Function can be seen in Figure 3 on the 
previous page.  The registers can be seen in-
between each of the F-function operations.  

One other important optimisation techniques 
specific for the FPGA architecture is the use of 
dual-port block-RAM.  Every round has its own 
associated F-function, as described earlier, and each 
function utilises 4 different s-boxes for byte 
substitution.  Each F-function makes 2 calls to the 
same s-box.  For this implementation we have 
chosen to use dual ported block-RAMs for the s-
boxes.   

4. RESULTS 

We have implemented the sub-pipelined 
architecture on a Virtex-II pro XC2Vp50 device.  
The core was designed with Xilinx’s System 
Generator, which produced the VHDL and 
associated files.  The VHDL was synthesised with 
ISE 5.2 and verified with the test vectors that were 

Algorithm Authors Device Area 
Slices 

(BRAMS) 

Key 
agility 

Throughput 
Gbits/sec 

Efficiency 
Mbps/slices 

 Camellia1 
  

Authors XC2Vp50 11,287
(88) 

YES 33.25 - 

 AES-1281 

 
Zambreno 
et al. [6] 

XC2V4000 16938 YES 23.57 1.39 

 MISTY11 

  
Rouvroy et 

al. [7] 
XCV1000 6,322 YES 19.34 3.06 

 SHACAL-12 McLoone et 
al. [8] 

XC2V4000 13,729 NO 17.02 1.24 

 IDEA2 Gonzalez et 
al. [9] 

XCV600 12,026
(estimated) 

NO 8.3 0.69 

 RC62 Beuchat 
[10] 

XC2V3000 8,554 
(80) 

NO 
(assumed) 

15.2 - 

 Hierocrypt-3 3 
 

Rogawski 
[11] 

EPF10K130V 25811 
LE 

YES 
(assumed) 

0.397 - 

CIPHERUNICORN-
A3 

NEC [12] EP20K1500E 7072 LE
(66 

ESB) 

YES 
 

0.044 - 

SC20004 
 

Shimoyama 
et al. [13] 

[0.25µm 
CMOS ASIC

65K 
gates 

YES 
(assumed) 

0.397 - 

Table 1. Summary of CRYPTREC and NESSIE 128-bit Block Cipher Winners 
and Finalists on FPGAs



submitted to NESSIE.  The core runs at a frequency 
of 259MHz that results in a throughput of 
33.25GBits/sec.  The implementation requires 
11,287 slices (47%) of the FPGA and uses 88 block-
RAMs (37%).  Generally comparisons against other 
encryption implementations can be difficult and can 
depend on architecture, device, embedded cores 
such as block-RAM, key agility, on-chip key 
scheduling, and other such criteria.  Table 1 shows 
a list of other known high throughput FPGA 
architectures for NESSIE and CRYPTREC.  For 
implementations that have used block-RAMs we 
have not included the efficiency.  It is possible to 
calculate the extra number of slices that the block-
RAMs would occupy if distributed memory was to 
be used, but this sort of calculation doesn’t take into 
account the extra routing, which would have an 
effect on the total throughput and therefore the 
efficiency. 

5. CONCLUSION 

In this paper we have presented a sub-pipelined 
Camellia implementation that has a throughput of 
33.25Gbit/sec.  Compared to other published FPGA 
implementations this is the fastest known 
throughput of all block ciphers (128-bit) 
recommended by NESSIE and CRYPTREC.  The 
importance of this algorithm has been proved in the 
open-call by NESSIE and CRYTREC.  

The core is able to receive new secret keys and 
data on every clock cycle.  We have utilised the 
available dual-port block-RAMs for use in the F-
Function and been able to pipeline the algorithm to 
the lowest level and then apply this to the FPGA 
architecture.  The core has a very high throughput 
and thus could be used in a secure high 
performance computing application.  As the core 
takes less then 50% of the Virtex 2 pro it might be 
possible to put two cores down thus being able to 
obtain a throughput on one FPGA device of around 
66Gbits/sec.  This will be part of the work for the 
future. 
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